期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis of microscopic properties of radiative shock experiments performed at the Orion laser facility
1
作者 R.Rodriguez G.Espinosa +4 位作者 J.M.Gil E Suzuki-Vidal T.Clayson C.Stehle E Graham 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2018年第2期189-201,共13页
In this work we have conducted a study on the radiative and spectroscopic properties of the radiative precursor and the post-shock region from experiments with radiative shocks in xenon performed at the Orion laser fa... In this work we have conducted a study on the radiative and spectroscopic properties of the radiative precursor and the post-shock region from experiments with radiative shocks in xenon performed at the Orion laser facility. The study is based on post-processing of radiation-hydrodynamics simulations of the experiment. In particular, we have analyzed the thermodynamic regime of the plasma, the charge state distributions, the monochromatic opacities and emissivities, and the specific intensities for plasma conditions of both regions. The study of the intensities is a useful tool to estimate ranges of electron temperatures present in the xenon plasma in these experiments and the analysis performed of the microscopic properties commented above helps to better understand the intensity spectra. Finally, a theoretical analysis of the possibility of the onset of isobaric thermal instabilities in the post-shock has been made, concluding that the instabilities obtained in the radiative-hydrodynamic simulations could be thermal ones due to strong radiative cooling. 展开更多
关键词 high-power lasers laboratory experiments on radiative shocks plasma radiative properties SPECTROSCOPY
原文传递
Analytical modelling of the expansion of a solid obstacle interacting with a radiative shock
2
作者 Th.Michel E.Falize +19 位作者 B.Albertazzi G.Rigon Y.Sakawa T.Sano H.Shimogawara R.Kumar T.Morita C.Michaut A.Casner R Barroso P.Mabey Y.Kuramitsu S.Laffite L.Van Box Som G.Gregori R.Kodama N.Ozaki P.Tzeferacos D.Lamb M.Koenig 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2018年第2期123-132,共10页
In this paper, we present a model characterizing the interaction of a radiative shock(RS) with a solid material, as described in a recent paper(Koenig et al., Phys. Plasmas, 24, 082707(2017)), the new model is then re... In this paper, we present a model characterizing the interaction of a radiative shock(RS) with a solid material, as described in a recent paper(Koenig et al., Phys. Plasmas, 24, 082707(2017)), the new model is then related to recent experiments performed on the GEKKO XII laser facility. The RS generated in a xenon gas cell propagates towards a solid obstacle that is ablated by radiation coming from the shock front and the radiative precursor, mimicking processes occurring in astrophysical phenomena. The model presented here calculates the dynamics of the obstacle expansion,which depends on several parameters, notably the geometry and the temperature of the shock. All parameters required for the model have been obtained from experiments. Good agreement between experimental data and the model is found when spherical geometry is taken into account. As a consequence, this model is a useful and easy tool to infer parameters from experimental data(such as the shock temperature), and also to design future experiments. 展开更多
关键词 high energy density physics laser–plasmas interaction modelling plasmas astrophysics plasma physics radiative hydrodynamics radiative shock
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部