Photocatalytic oxidation of methane to value-added chemicals is a promising process under mild conditions,nevertheless confronting great challenges in efficiently activating C-H bonds and inhibiting over-oxidation.Her...Photocatalytic oxidation of methane to value-added chemicals is a promising process under mild conditions,nevertheless confronting great challenges in efficiently activating C-H bonds and inhibiting over-oxidation.Herein,we propose a comprehensive strategy for the selective generation of reactive oxygen species(ROS)by regulating the sizes and facets of Au nanoparticles loaded on ZnO.For photocatalytic methane oxidation at ambient temperature,a high oxygenates yield of 36.4 mmol·g^(-1)·h^(-1) with a nearly 100%selectivity has been achieved over the optimized 1.0%Au/ZnO-9.6(1%Au with(111)facet and 9.6 nm size on ZnO)photocatalyst,exceeding most reported literatures.Mechanism investigations reveal that 1.0%Au/ZnO-9.6 with the medium size and Au(111)facet guarantees the favourable formation of superoxide radicals(·OOH)through mild oxygen reduction,ultimately leading to excellent photocatalytic methane oxidation performance.This work provides some guidance for the delicate design of photocatalysts for efficient photocatalytic methane oxidation and oxygen utilization.展开更多
基金supported by the National Key Research and Development Program of China(No.2019YFA0708700)the National Natural Science Foundation of China(Nos.22322815,22179146,51672309,51172285,51372277)+5 种基金the Major Scientific and Technological Innovation Project of Shandong Province(No.2020CXGC010402)the Fundamental Research Funds for Central Universities(No.18CX07009A)YanKuang Group Co.,Ltd.(No.YKZB2020-167)the Young Taishan Scholar Program of Shandong Province(No.tsqn20182027)Taishan Scholar Project(No.ts201712020)the Technological Leading Scholar of 10000 Talent Project(No.W03020508).
文摘Photocatalytic oxidation of methane to value-added chemicals is a promising process under mild conditions,nevertheless confronting great challenges in efficiently activating C-H bonds and inhibiting over-oxidation.Herein,we propose a comprehensive strategy for the selective generation of reactive oxygen species(ROS)by regulating the sizes and facets of Au nanoparticles loaded on ZnO.For photocatalytic methane oxidation at ambient temperature,a high oxygenates yield of 36.4 mmol·g^(-1)·h^(-1) with a nearly 100%selectivity has been achieved over the optimized 1.0%Au/ZnO-9.6(1%Au with(111)facet and 9.6 nm size on ZnO)photocatalyst,exceeding most reported literatures.Mechanism investigations reveal that 1.0%Au/ZnO-9.6 with the medium size and Au(111)facet guarantees the favourable formation of superoxide radicals(·OOH)through mild oxygen reduction,ultimately leading to excellent photocatalytic methane oxidation performance.This work provides some guidance for the delicate design of photocatalysts for efficient photocatalytic methane oxidation and oxygen utilization.