We propose a spatial three-degree-of-freedom (DOF) parallel mechanism combining two degrees of rotations and one degree of translation to support the active reflector units of a large spherical radio telescope. The ki...We propose a spatial three-degree-of-freedom (DOF) parallel mechanism combining two degrees of rotations and one degree of translation to support the active reflector units of a large spherical radio telescope. The kinematics, workspace and accuracy of the mechanism are analyzed. One-dimensional and two-dimensional fitting errors to the working region of active reflector are investigated. Dimensional parameters of the mechanism and active reflector unit are examined with respect to the requirement of fitting accuracy. The result of accuracy analysis shows the effectiveness and feasibility of the proposed mechanism, and gives a design rule to guarantee the highest working frequency required by large radio telescope.展开更多
This paper proposes an active sub-reflector suitable for large radio telescopes,which can compensate both of the deformation of the main reflector and sub-reflector position offsets.The mathematical formula of the mai...This paper proposes an active sub-reflector suitable for large radio telescopes,which can compensate both of the deformation of the main reflector and sub-reflector position offsets.The mathematical formula of the main reflector deformation compensated by the sub-reflector is deduced based on Cassegrain and Gregory antenna structures.The position of the sub-reflector is adjustable to compensate for defocusing errors on high and low elevations,which are mainly caused by the deformation of the sub-reflector supporting legs.In this paper,the method of obtaining the optimum position of the sub-reflector from the aperture phase by the interferometric method is introduced.The actual measurement is verified on the Tianma 65 m radio telescope,which provides a new way to diagnose the position error of the sub-reflector.展开更多
The science of radio astronomy focuses on the observation and study of celestial objects by reading their radio waves. The 5 meter radio-telescope is able to observe different radio sources using a C-band LNB. This re...The science of radio astronomy focuses on the observation and study of celestial objects by reading their radio waves. The 5 meter radio-telescope is able to observe different radio sources using a C-band LNB. This research was essentially focused on Crab Nebula, also known as Taurus A. The study led to interesting observations, which were validated numerically using various scientific computing software. The radio waves emitted by Taurus A are readable by the RTL-SDR, a software defined radio receiver. This device is capable of reading radio frequencies in the range of 0.5 MHZ to 1700 MHZ.展开更多
The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main ...The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main specifications,design,performance analysis,testing,and construction of the telescope antenna.The measured total efficiency is better than 50%over the whole elevation angle range,first sidelobe levels are less than−20 dB,antenna system noise temperatures are less than 70 K at 30°elevation angle,and pointing accuracy is less than 3″.The measured and calculated results are in good agreement,verifying the effectiveness of the design and analysis.展开更多
We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total...We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total of 67 pulses with signal-to-noise ratios above a 5σthreshold were detected.The peak flux densities of these pulses are 58 to 194 times that of the average profile,and their pulse energies are 3 to 68 times that of the average pulse.These pulses are clustered around phases about 5-ahead of the peak of the average profile.Compared with the width of the average profile,they are relatively narrow,with the full widths at half-maximum ranging from 0.28 ° to 1.78 °.The distribution of pulse-energies follows a lognormal distribution.These sporadic strong pulses detected from PSR B0656+14 have different characteristics from both typical giant pulses and its regular pulses.展开更多
This study presents a general outline of the Qitai radio telescope(QTT)project.Qitai,the site of the telescope,is a county of Xinjiang Uygur Autonomous Region of China,located in the east Tianshan Mountains at an elev...This study presents a general outline of the Qitai radio telescope(QTT)project.Qitai,the site of the telescope,is a county of Xinjiang Uygur Autonomous Region of China,located in the east Tianshan Mountains at an elevation of about 1800 m.The QTT is a fully steerable,Gregorian-type telescope with a standard parabolic main reflector of 110 m diameter.The QTT has adopted an umbrella support,homology-symmetric lightweight design.The main reflector is active so that the deformation caused by gravity can be corrected.The structural design aims to ultimately allow high-sensitivity observations from 150 MHz up to115 GHz.To satisfy the requirements for early scientific goals,the QTTwill be equipped with ultra-wideband receivers and large field-of-view multi-beam receivers.A multi-function signal-processing system based on RFSo C and GPU processor chips will be developed.These will enable the QTT to operate in pulsar,spectral line,continuum and Very Long Baseline Interferometer(VLBI)observing modes.Electromagnetic compatibility(EMC)and radio frequency interference(RFI)control techniques are adopted throughout the system design.The QTT will form a world-class observational platform for the detection of lowfrequency(nano Hertz)gravitational waves through pulsar timing array(PTA)techniques,pulsar surveys,the discovery of binary black-hole systems,and exploring dark matter and the origin of life in the universe.The QTT will also play an important role in improving the Chinese and international VLBI networks,allowing high-sensitivity and high-resolution observations of the nuclei of distant galaxies and gravitational lensing systems.Deep astrometric observations will also contribute to improving the accuracy of the celestial reference frame.Potentially,the QTT will be able to support future space activities such as planetary exploration in the solar system and to contribute to the search for extraterrestrial intelligence.展开更多
Five hundred meter aperture spherical radio telescope (FAST) will be the largest radio telescope in the world. The innovative engineering concept and design pave a new road to realizing a huge single dish in the most ...Five hundred meter aperture spherical radio telescope (FAST) will be the largest radio telescope in the world. The innovative engineering concept and design pave a new road to realizing a huge single dish in the most effective way. Three outstanding features of the telescope are the unique karst depressions as the sites, the active main reflector which corrects spherical aberration on the ground to achieve full polarization and a wide band without involving a complex feed system, and the light focus cabin driven by cables and servomechanism plus a parallel robot as secondary adjustable system to carry the most precise parts of the receivers. Being the most sensitive radio telescope, FAST will enable astronomers to jumpstart many of the science goals, for example, the neutral hydrogen line surveying in distant galaxies out to very large redshifts, looking for the first shining star, detecting thousands of new pulsars, etc. Extremely interesting and exotic objects may yet await discovery by FAST. As a multi-science platform, the telescope will provide treasures to astronomers, as well as bring prosperity to other research, e.g. space weather study, deep space exploration and national security. The construction of FAST itself is expected to promote the development in high technology of relevant fields.展开更多
The 13.7-m millimeter-wave radio telescope of Purple Mountain Observatory operates at 3200-m above the sea level near Delingha, Qinghai Province, China. Equipped with a superconducting SIS receiver, the telescope is u...The 13.7-m millimeter-wave radio telescope of Purple Mountain Observatory operates at 3200-m above the sea level near Delingha, Qinghai Province, China. Equipped with a superconducting SIS receiver, the telescope is used in the millimeter-wave band ranging from 85 to 115 GHz. An upgrade procedure is reported here which includes a superconducting SIS receiver, a new phase-locked local oscillator, a dedicated multi-line backend system, and a new control system based on industrial computer with PCI bus. With the dedicated multi-line backend system, the CO and isotopic lines around 110 GHz are obtained simultaneously. In recent years, scientific activities with this telescope have been focused on studies of Galactic molecular clouds and star formation regions, including surveys of molecular lines from IRAS sources and large-scale map of molecular clouds. Other programs include studies of the circumstellar envelope of late-type stars and interaction of Galactic supernova remnants with dense molecular gas.展开更多
An active reflector is one of the three main innovations incorporated in the Five-hundredmeter Aperture Spherical radio Telescope(FAST).The deformation of such a huge spherically shaped reflector into different tran...An active reflector is one of the three main innovations incorporated in the Five-hundredmeter Aperture Spherical radio Telescope(FAST).The deformation of such a huge spherically shaped reflector into different transient parabolic shapes is achieved by using 2225 hydraulic actuators which change the position of the 2225 nodes through the connected down tied cables.For each different tracking process of the telescope,more than 1/3 of these 2225 actuators must be in operation to tune the parabolic aperture accurately and meet the surface error restriction.This means that some of these actuators are inevitably located within the main beam of the receiver,and Electromagnetic Interference(EMI)from the actuators must be mitigated to ensure the scientific output of the telescope.Based on the threshold level of interference detrimental to radio astronomy described in ITU-R Recommendation RA.769 and EMI measurements,the shielding efficiency(SE)requirement for each actuator is set to be 80 d B in the frequency range from 70 MHz to 3 GHz.Therefore,Electromagnetic Compatibility(EMC)was taken into account in the actuator design by measures such as power line filters,optical fibers,shielding enclosures and other structural measures.In 2015,all the actuators had been installed at the FAST site.Till now,no apparent EMI from the actuators has been detected by the receiver,which demonstrates the effectiveness of these EMC measures.展开更多
Acting as a pilot of the Square Kilometer Array (SKA), a Five hundred meter Aperture Spherical Telescope (FAST) project puts forward many innovative ideas, among which the design of the active main reflector shows fas...Acting as a pilot of the Square Kilometer Array (SKA), a Five hundred meter Aperture Spherical Telescope (FAST) project puts forward many innovative ideas, among which the design of the active main reflector shows fascinating potential. The main spherical reflector is to be composed of thousands of small spherical panels, which can be adjusted to fit a paraboloid of revolution in real time. For the construction and performance, the rms of the fit must be optimized, and so appropriate dimensional limits for the panels need to be determined. The issue of how to divide the spherical reflector mathematically is addressed in this paper. The advantages and drawbacks of various segmenting methods are discussed and an optimum one is suggested.展开更多
This note introduces the newly developed working modes, i.e. one-dimensional meter-wave radio heliograph (MRH) and interplanetary scintillation (IPS) telescope, of meter-wave aperture synthesis radio telescope (MSRT) ...This note introduces the newly developed working modes, i.e. one-dimensional meter-wave radio heliograph (MRH) and interplanetary scintillation (IPS) telescope, of meter-wave aperture synthesis radio telescope (MSRT) at Beijing Astronomical Observatory (BAO). The note describes briefly the scientific objectives, configurations of the hardware and software, and functions of the system. It presents the examples of observations on solar meter-wave bursts and IPS with the two new working modes. The results indicated that new modes not only can provide the information on the evolution of solar activities with space and time, but also can trace and monitor the propagation and spatial distribution of interplanetary plasma shock resulting from solar activities and the instability of the ionosphere, etc. Both modes are new facilities that could fill the gaps in scientific frontiers.展开更多
基金Supported by the National Natural Science Foundation of China
文摘We propose a spatial three-degree-of-freedom (DOF) parallel mechanism combining two degrees of rotations and one degree of translation to support the active reflector units of a large spherical radio telescope. The kinematics, workspace and accuracy of the mechanism are analyzed. One-dimensional and two-dimensional fitting errors to the working region of active reflector are investigated. Dimensional parameters of the mechanism and active reflector unit are examined with respect to the requirement of fitting accuracy. The result of accuracy analysis shows the effectiveness and feasibility of the proposed mechanism, and gives a design rule to guarantee the highest working frequency required by large radio telescope.
基金supported by the National Key R&D Program of China(No.2018YFA0404702)the National Natural Science Foundation of China(Grant Nos.A030802 and U1631114)CAS Key Technology Talent Program
文摘This paper proposes an active sub-reflector suitable for large radio telescopes,which can compensate both of the deformation of the main reflector and sub-reflector position offsets.The mathematical formula of the main reflector deformation compensated by the sub-reflector is deduced based on Cassegrain and Gregory antenna structures.The position of the sub-reflector is adjustable to compensate for defocusing errors on high and low elevations,which are mainly caused by the deformation of the sub-reflector supporting legs.In this paper,the method of obtaining the optimum position of the sub-reflector from the aperture phase by the interferometric method is introduced.The actual measurement is verified on the Tianma 65 m radio telescope,which provides a new way to diagnose the position error of the sub-reflector.
文摘The science of radio astronomy focuses on the observation and study of celestial objects by reading their radio waves. The 5 meter radio-telescope is able to observe different radio sources using a C-band LNB. This research was essentially focused on Crab Nebula, also known as Taurus A. The study led to interesting observations, which were validated numerically using various scientific computing software. The radio waves emitted by Taurus A are readable by the RTL-SDR, a software defined radio receiver. This device is capable of reading radio frequencies in the range of 0.5 MHZ to 1700 MHZ.
文摘The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main specifications,design,performance analysis,testing,and construction of the telescope antenna.The measured total efficiency is better than 50%over the whole elevation angle range,first sidelobe levels are less than−20 dB,antenna system noise temperatures are less than 70 K at 30°elevation angle,and pointing accuracy is less than 3″.The measured and calculated results are in good agreement,verifying the effectiveness of the design and analysis.
基金funded by the National Natural Science Foundation of China(Grant No.10973026)
文摘We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total of 67 pulses with signal-to-noise ratios above a 5σthreshold were detected.The peak flux densities of these pulses are 58 to 194 times that of the average profile,and their pulse energies are 3 to 68 times that of the average pulse.These pulses are clustered around phases about 5-ahead of the peak of the average profile.Compared with the width of the average profile,they are relatively narrow,with the full widths at half-maximum ranging from 0.28 ° to 1.78 °.The distribution of pulse-energies follows a lognormal distribution.These sporadic strong pulses detected from PSR B0656+14 have different characteristics from both typical giant pulses and its regular pulses.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFC2203501,2021YFC2203502,2021YFC2203503,and 2021YFC2203600)the National Natural Science Foundation of China(Grant Nos.12173077,11873082,11803080,and 12003062)+3 种基金the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.PTYQ2022YZZD01)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instrumentsbudgeted from the Ministry of Finance of China and Administrated by the Chinese Academy of Sciencesthe Chinese Academy of Sciences“Light of West China”Program(Grant No.2021-XBQNXZ-030)。
文摘This study presents a general outline of the Qitai radio telescope(QTT)project.Qitai,the site of the telescope,is a county of Xinjiang Uygur Autonomous Region of China,located in the east Tianshan Mountains at an elevation of about 1800 m.The QTT is a fully steerable,Gregorian-type telescope with a standard parabolic main reflector of 110 m diameter.The QTT has adopted an umbrella support,homology-symmetric lightweight design.The main reflector is active so that the deformation caused by gravity can be corrected.The structural design aims to ultimately allow high-sensitivity observations from 150 MHz up to115 GHz.To satisfy the requirements for early scientific goals,the QTTwill be equipped with ultra-wideband receivers and large field-of-view multi-beam receivers.A multi-function signal-processing system based on RFSo C and GPU processor chips will be developed.These will enable the QTT to operate in pulsar,spectral line,continuum and Very Long Baseline Interferometer(VLBI)observing modes.Electromagnetic compatibility(EMC)and radio frequency interference(RFI)control techniques are adopted throughout the system design.The QTT will form a world-class observational platform for the detection of lowfrequency(nano Hertz)gravitational waves through pulsar timing array(PTA)techniques,pulsar surveys,the discovery of binary black-hole systems,and exploring dark matter and the origin of life in the universe.The QTT will also play an important role in improving the Chinese and international VLBI networks,allowing high-sensitivity and high-resolution observations of the nuclei of distant galaxies and gravitational lensing systems.Deep astrometric observations will also contribute to improving the accuracy of the celestial reference frame.Potentially,the QTT will be able to support future space activities such as planetary exploration in the solar system and to contribute to the search for extraterrestrial intelligence.
基金the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant No. 10433020).
文摘Five hundred meter aperture spherical radio telescope (FAST) will be the largest radio telescope in the world. The innovative engineering concept and design pave a new road to realizing a huge single dish in the most effective way. Three outstanding features of the telescope are the unique karst depressions as the sites, the active main reflector which corrects spherical aberration on the ground to achieve full polarization and a wide band without involving a complex feed system, and the light focus cabin driven by cables and servomechanism plus a parallel robot as secondary adjustable system to carry the most precise parts of the receivers. Being the most sensitive radio telescope, FAST will enable astronomers to jumpstart many of the science goals, for example, the neutral hydrogen line surveying in distant galaxies out to very large redshifts, looking for the first shining star, detecting thousands of new pulsars, etc. Extremely interesting and exotic objects may yet await discovery by FAST. As a multi-science platform, the telescope will provide treasures to astronomers, as well as bring prosperity to other research, e.g. space weather study, deep space exploration and national security. The construction of FAST itself is expected to promote the development in high technology of relevant fields.
文摘The 13.7-m millimeter-wave radio telescope of Purple Mountain Observatory operates at 3200-m above the sea level near Delingha, Qinghai Province, China. Equipped with a superconducting SIS receiver, the telescope is used in the millimeter-wave band ranging from 85 to 115 GHz. An upgrade procedure is reported here which includes a superconducting SIS receiver, a new phase-locked local oscillator, a dedicated multi-line backend system, and a new control system based on industrial computer with PCI bus. With the dedicated multi-line backend system, the CO and isotopic lines around 110 GHz are obtained simultaneously. In recent years, scientific activities with this telescope have been focused on studies of Galactic molecular clouds and star formation regions, including surveys of molecular lines from IRAS sources and large-scale map of molecular clouds. Other programs include studies of the circumstellar envelope of late-type stars and interaction of Galactic supernova remnants with dense molecular gas.
基金supported by the National Natural Science Foundation of China (No. 11473043)
文摘An active reflector is one of the three main innovations incorporated in the Five-hundredmeter Aperture Spherical radio Telescope(FAST).The deformation of such a huge spherically shaped reflector into different transient parabolic shapes is achieved by using 2225 hydraulic actuators which change the position of the 2225 nodes through the connected down tied cables.For each different tracking process of the telescope,more than 1/3 of these 2225 actuators must be in operation to tune the parabolic aperture accurately and meet the surface error restriction.This means that some of these actuators are inevitably located within the main beam of the receiver,and Electromagnetic Interference(EMI)from the actuators must be mitigated to ensure the scientific output of the telescope.Based on the threshold level of interference detrimental to radio astronomy described in ITU-R Recommendation RA.769 and EMI measurements,the shielding efficiency(SE)requirement for each actuator is set to be 80 d B in the frequency range from 70 MHz to 3 GHz.Therefore,Electromagnetic Compatibility(EMC)was taken into account in the actuator design by measures such as power line filters,optical fibers,shielding enclosures and other structural measures.In 2015,all the actuators had been installed at the FAST site.Till now,no apparent EMI from the actuators has been detected by the receiver,which demonstrates the effectiveness of these EMC measures.
文摘Acting as a pilot of the Square Kilometer Array (SKA), a Five hundred meter Aperture Spherical Telescope (FAST) project puts forward many innovative ideas, among which the design of the active main reflector shows fascinating potential. The main spherical reflector is to be composed of thousands of small spherical panels, which can be adjusted to fit a paraboloid of revolution in real time. For the construction and performance, the rms of the fit must be optimized, and so appropriate dimensional limits for the panels need to be determined. The issue of how to divide the spherical reflector mathematically is addressed in this paper. The advantages and drawbacks of various segmenting methods are discussed and an optimum one is suggested.
基金This work was supported by theUnited Laboratory of Radio Astronomy, National Natural Science Foundation of China (Grant No. 19773017) Beijing Astronomical Observatory, and headquarters of Meridian Project.
文摘This note introduces the newly developed working modes, i.e. one-dimensional meter-wave radio heliograph (MRH) and interplanetary scintillation (IPS) telescope, of meter-wave aperture synthesis radio telescope (MSRT) at Beijing Astronomical Observatory (BAO). The note describes briefly the scientific objectives, configurations of the hardware and software, and functions of the system. It presents the examples of observations on solar meter-wave bursts and IPS with the two new working modes. The results indicated that new modes not only can provide the information on the evolution of solar activities with space and time, but also can trace and monitor the propagation and spatial distribution of interplanetary plasma shock resulting from solar activities and the instability of the ionosphere, etc. Both modes are new facilities that could fill the gaps in scientific frontiers.