Radio frequency identification(RFID) is a new type of non-contact automatic identification technology.Due to its low energy consumption,low cost,and its adaptability to harsh environments,it has been applied to many f...Radio frequency identification(RFID) is a new type of non-contact automatic identification technology.Due to its low energy consumption,low cost,and its adaptability to harsh environments,it has been applied to many fields.In the RFID systems,data collision is inevitable when the reader sends a communication request and multiple tags respond with simultaneous data transmission.Data collision is prone to causing problems such as:identification delay,spectrum resource waste,a decreased system throughput rate,etc.Therefore,an efficient,stable anti-collision protocol is crucial for RFID systems.This research analysed the current research into RFID anticollision protocols and summarised means for its improvement through the mechanism of implementation of different types anticollision protocols.Finally,a new direction is proposed for the future development of RFID anti-collision protocol systems.展开更多
When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-fr...When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.展开更多
Modern cars are mostly computerized and equipped with passive keyless entry and start(PKES) system. PKES is based on Radio Frequency Identification(RFID) technology for authentication of the authorized drivers. RFID t...Modern cars are mostly computerized and equipped with passive keyless entry and start(PKES) system. PKES is based on Radio Frequency Identification(RFID) technology for authentication of the authorized drivers. RFID technology has replaced the conventional ways of identification and authorization in order to facilitate users while introducing new security challenges. In this article, we focused on verifying the presence of authorized key in the physical proximity of car by employing multiple antennas. Application of multiple antennas to the currently developed cryptographic algorithms opens a new approach for researchers to improve security of RFID based systems. We propose an advanced security system for PKES using multiple antennas wherein an authorized key passes through multiple vicinities to allow driver to access and start the car. Furthermore, we modified a light-weight cryptographic protocol named as HB(Hopper and Blum) protocol to integrate it with the proposed design based on multiple antennas. Simulation results show improvement in security functionality while keeping in view the efficiency constraints.展开更多
The radio frequency identification(RFID)technology has been widely used so far in industrial and commercial applications.To develop the RFID tags that support elliptic curve cryptography(ECC),we propose a scalable and...The radio frequency identification(RFID)technology has been widely used so far in industrial and commercial applications.To develop the RFID tags that support elliptic curve cryptography(ECC),we propose a scalable and mutual authentication protocol based on ECC.We also suggest a tag privacy model that provides adversaries exhibiting strong abilities to attack a tag’s privacy.We prove that the proposed protocol preserves privacy under the privacy model and that it meets general security requirements.Compared with other recent ECCbased RFID authentication protocols,our protocol provides tag privacy and performs the best under comprehensive evaluation of tag privacy,tag computation cost,and communications cost.展开更多
基金The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. This paper is supported by the National Natural Science Founda- tion of China (No. 61371092), the Doctoral Fund of Ministry of Education of China (No.20130061120062), and the China Postdoc- toral Science Foundation (No. 2014M551184).
文摘Radio frequency identification(RFID) is a new type of non-contact automatic identification technology.Due to its low energy consumption,low cost,and its adaptability to harsh environments,it has been applied to many fields.In the RFID systems,data collision is inevitable when the reader sends a communication request and multiple tags respond with simultaneous data transmission.Data collision is prone to causing problems such as:identification delay,spectrum resource waste,a decreased system throughput rate,etc.Therefore,an efficient,stable anti-collision protocol is crucial for RFID systems.This research analysed the current research into RFID anticollision protocols and summarised means for its improvement through the mechanism of implementation of different types anticollision protocols.Finally,a new direction is proposed for the future development of RFID anti-collision protocol systems.
基金supported in part by National Natural Science Foundation of China(U22B2004,62371106)in part by the Joint Project of China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.
基金supported by the National Key Research and Development Program(No.2016YFB0800602)National Natural Science Foundation of China(NSFC)(No.61502048)Shandong provincial Key Research and Development Program of China(2018CXGC0701,2018GGX106005)
文摘Modern cars are mostly computerized and equipped with passive keyless entry and start(PKES) system. PKES is based on Radio Frequency Identification(RFID) technology for authentication of the authorized drivers. RFID technology has replaced the conventional ways of identification and authorization in order to facilitate users while introducing new security challenges. In this article, we focused on verifying the presence of authorized key in the physical proximity of car by employing multiple antennas. Application of multiple antennas to the currently developed cryptographic algorithms opens a new approach for researchers to improve security of RFID based systems. We propose an advanced security system for PKES using multiple antennas wherein an authorized key passes through multiple vicinities to allow driver to access and start the car. Furthermore, we modified a light-weight cryptographic protocol named as HB(Hopper and Blum) protocol to integrate it with the proposed design based on multiple antennas. Simulation results show improvement in security functionality while keeping in view the efficiency constraints.
基金partially supported by the National Natural Science Foundation of China under Grant No.61370203the China Postdoctoral Science Foundation under Grant No.2016M602675the Foundation of the Central Universities in China under Grant No.ZYGX2016J123。
文摘The radio frequency identification(RFID)technology has been widely used so far in industrial and commercial applications.To develop the RFID tags that support elliptic curve cryptography(ECC),we propose a scalable and mutual authentication protocol based on ECC.We also suggest a tag privacy model that provides adversaries exhibiting strong abilities to attack a tag’s privacy.We prove that the proposed protocol preserves privacy under the privacy model and that it meets general security requirements.Compared with other recent ECCbased RFID authentication protocols,our protocol provides tag privacy and performs the best under comprehensive evaluation of tag privacy,tag computation cost,and communications cost.