Radio frequency identification(RFID) is a new type of non-contact automatic identification technology.Due to its low energy consumption,low cost,and its adaptability to harsh environments,it has been applied to many f...Radio frequency identification(RFID) is a new type of non-contact automatic identification technology.Due to its low energy consumption,low cost,and its adaptability to harsh environments,it has been applied to many fields.In the RFID systems,data collision is inevitable when the reader sends a communication request and multiple tags respond with simultaneous data transmission.Data collision is prone to causing problems such as:identification delay,spectrum resource waste,a decreased system throughput rate,etc.Therefore,an efficient,stable anti-collision protocol is crucial for RFID systems.This research analysed the current research into RFID anticollision protocols and summarised means for its improvement through the mechanism of implementation of different types anticollision protocols.Finally,a new direction is proposed for the future development of RFID anti-collision protocol systems.展开更多
As a kind of brand-new technology, radio frequency identification management, data control and acquisition. This paper introduced food safety system construction, analyzed the advantages and problems in dairy modem su...As a kind of brand-new technology, radio frequency identification management, data control and acquisition. This paper introduced food safety system construction, analyzed the advantages and problems in dairy modem suggestions for solution according to the practical situation. (RFID) plays an important role in dairy information tracing and culture function extension of managing breeding technology, and finally put forward some展开更多
A compact antenna formed by three concentric split rings for ultra-high frequency(UHF)radio frequency identification(RFID)tag is proposed in this paper.The antenna is composed of two parts,an outer short-circuited rin...A compact antenna formed by three concentric split rings for ultra-high frequency(UHF)radio frequency identification(RFID)tag is proposed in this paper.The antenna is composed of two parts,an outer short-circuited ring modified from a traditional split-ring resonator(SRR)antenna and an inner SRR load,so the antenna can be regarded as a short-circuited ring loaded with SRR.According to the transmission line theory,to conjugate match with the capacitive input-impedance of a tag chip,the length of the short-circuited ring isλg/4 shorter than that of an open-circuited dipole of a traditional SRR antenna,whereλg is the wavelengh of the operating frequency.Hence,the size of the proposed antenna is more compact than that of the traditional SRR antenna.Thereafter,the proposed antenna is simulated and optimized by ANSYS high-frequency structure simulator(HFSS).The impedance,efficiency,and mutual coupling of the fabricated antenna are tested in a reverberation chamber(RC).The results show that the size of the presented antenna is 83%smaller than that of the traditional SRR antenna and the proposed antenna can cover the whole UHF RFID operating frequency band worldwide(840—960 MHz).The measured read range of the tag exhibits maximum values of 45 cm in free space and 37 cm under dense tag environment.展开更多
In order to construct a resource-saving and environment- friendly society, the advantages of radio frequency identification (RFID) were considered. And it put forward the idea of introducing RFID in the recycling ac...In order to construct a resource-saving and environment- friendly society, the advantages of radio frequency identification (RFID) were considered. And it put forward the idea of introducing RFID in the recycling activities of waste products. Taking into account such elements as the technical level of RFID, cost saving from remanufacturing and the cost of RFID tags, both centralized and decentralized supply chain models with different participants in waste product collection were created, in order to determine the optimal pricing strategy and RFID technical level. In the end, sensitivity analyses were conducted to analyze the impacts of scaling parameter for additional increased recovery rate with RFED on pricing and RFID technology level, and impacts of cost saving on the profits of participants in different remanufacturing closed-loop supply chain models.展开更多
When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-fr...When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.展开更多
The method of acquiring the real-time data has influenced the implementation of the manufacturing execution system (MES). Accompanied with turning the MES into service-oriented manufacturing execution system (so-ME...The method of acquiring the real-time data has influenced the implementation of the manufacturing execution system (MES). Accompanied with turning the MES into service-oriented manufacturing execution system (so-MES), real-time e-quality tracking (e-QT), in which real-time data are computed, has played more and more important roles in manufacturing. This paper presents an e-QT model through the study of real-time status data tracking and quality data collecting. An implementing architecture of the e-QT model is constructed on the basis of radio frequency identification devices (RFID) data-tracking network. In order to develop the e-QT system, some key enabling technologies, such as configuration, data collection, and data processing, etc, are studied. The relation schema between hardware is built for the RFID data-tracking network based on the configuration technique. Real-time data are sampled by using data collecting technique. Furthermore, real-time status and quality data in a shop-floor can be acquired in terms of using the real-time data computing method. Finally, a prototype system is developed and a running example is given so as to verify the feasibility of methods proposed in this paper. The proposed research provides effective e-quality tracking theoretical foundation through the use of RFID technology for the discrete manufacturing.展开更多
In a passive ultra-high frequency(UHF)radio frequency identification(RFID)system,the recovery of collided tag signals on a physical layer can enhance identification efficiency.However,frequency drift is very common in...In a passive ultra-high frequency(UHF)radio frequency identification(RFID)system,the recovery of collided tag signals on a physical layer can enhance identification efficiency.However,frequency drift is very common in UHF RFID systems,and will have an influence on the recovery on the physical layer.To address the problem of recovery with the frequency drift,this paper adopts a radial basis function(RBF)network to separate the collision signals,and decode the signals via FM0 to recovery collided RFID tags.Numerical results show that the method in this paper has better performance of symbol error rate(SER)and separation efficiency compared to conventional methods when frequency drift occurs.展开更多
In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,w...In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.展开更多
Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequen...Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequency identification(RFID) has been widely used in warehouse for item identifying. Meanwhile, RFID technology also has great potential for pallets localization which is underutilized in warehouse management. RFID-based checking-in and inventory systems have been applied in warehouse management by many enterprises. Localization approach is studied, which is compatible with existing RFID checking-in and inventory systems. A novel RFID localization approach is proposed for pallets checking-in. Phase variation of nearby tags was utilized to estimate the position of added pallets. A novel inventory localization approach combing angle of arrival(AOA) measurement and received signal strength(RSS) is also proposed for pallets inventory. Experiments were carried out using standard UHF passive RFID system. Experimental results show an acceptable localization accuracy which can satisfy the requirement of warehouse management.展开更多
Machine Learning has evolved with a variety of algorithms to enable state-of-the-art computer vision applications.In particular the need for automating the process of real-time food item identification,there is a huge...Machine Learning has evolved with a variety of algorithms to enable state-of-the-art computer vision applications.In particular the need for automating the process of real-time food item identification,there is a huge surge of research so as to make smarter refrigerators.According to a survey by the Food and Agriculture Organization of the United Nations(FAO),it has been found that 1.3 billion tons of food is wasted by consumers around the world due to either food spoilage or expiry and a large amount of food is wasted from homes and restaurants itself.Smart refrigerators have been very successful in playing a pivotal role in mitigating this problem of food wastage.But a major issue is the high cost of available smart refrigerators and the lack of accurate design algorithms which can help achieve computer vision in any ordinary refrigerator.To address these issues,this work proposes an automated identification algorithm for computer vision in smart refrigerators using InceptionV3 and MobileNet Convolutional Neural Network(CNN)architectures.The designed module and algorithm have been elaborated in detail and are considerably evaluated for its accuracy using test images on standard fruits and vegetable datasets.A total of eight test cases are considered with accuracy and training time as the performance metric.In the end,real-time testing results are also presented which validates the system’s performance.展开更多
Dynamic framed slotted Aloha algorithm is one of popular passive radio frequency identification(RFID) tag anticollision algorithms. In the algorithm, a frame length requires dynamical adjustment to achieve higher iden...Dynamic framed slotted Aloha algorithm is one of popular passive radio frequency identification(RFID) tag anticollision algorithms. In the algorithm, a frame length requires dynamical adjustment to achieve higher identification efficiency.Generally, the adjustment of the frame length is not only related to the number of tags, but also to the occurrence probability of capture effect. Existing algorithms could estimate both the number of tags and the probability of capture effect. Under large-scale RFID tag identification, however, the number of tags would be much larger than an initial frame length. In this scenario, the existing algorithm's estimation errors would substantially increase. In this paper, we propose a novel algorithm called capture-aware Bayesian estimate, which adopts Bayesian rules to accurately estimate the number and the probability simultaneously. From numerical results, the proposed algorithm adapts well to the large-scale RFID tag identification. It has lower estimation errors than the existing algorithms. Further,the identification efficiency from the proposed estimate is also higher than the existing algorithms.展开更多
In recent years, the application of the Internet of Things (IoT) has become an emerging business. The most important concept of next-generation network for providing a common global IT platform is combining seamless...In recent years, the application of the Internet of Things (IoT) has become an emerging business. The most important concept of next-generation network for providing a common global IT platform is combining seamless networks and networked things, objects or sensors. Also, wireless body area networks (WBANs) are becoming mature with the widespread usage of the IoT. In order to support WBAN, the platform, scenario and emergency service are necessary due to the sensors in WBAN being related to wearer's life. The sensors on the body detect a lot of information about bioinformatics and medical signals, such as heartbeat and blood. Thus, the integration of IoT and network communication in daily life is important. However, there is not only a lack of common fabric for integrating IoT with current Internet and but also no emergency call process in the current network communication envi-ronment. To overcome such situations, the prototype of integrating IoT and emergency call process is discussed. A simulated boot-strap platform to provide the discussion of open challenges and solutions for deploying IoT in Internet and the emergency commu-nication system are analyzed by using a service of 3GPP IP multimedia subsystem. Finally, the prototype for supporting WBAN with emergence service is also addressed and the performance results are useful to service providers and network operators that they can estimate their migration to IoT by referring to this experience and experiment results. Furthermore, the queuing model used to achieve the performance of emergency service in IMS and the delay time of the proposed model is analyzed.展开更多
Identifying speed,tag average response times and reliability are the most important capabilities in passive RFID(radio frequency identification) system.QT(query tree) is a famous algorithm for lowest-cost RFID tags,bu...Identifying speed,tag average response times and reliability are the most important capabilities in passive RFID(radio frequency identification) system.QT(query tree) is a famous algorithm for lowest-cost RFID tags,but its shortcoming is high searching delay and high tag average response times.A prefix subsection matching binary(PSMB) algorithm based on QTalgorithm is proposed.The key idea of PSMB anti-collision algorithm is that,during searching phase,a given reader uses the particular tags ID,which has been searched out formerly,to shorten searching delay and depress tag average response times.The idea of PSMB algorithm can be described as follows.Usually,tag ID is composed of several subsections which have different meanings.Based on the tags ID searched out formerly,a given reader builds a prefix database.In subsequent searching phase,the reader uses its prefix database to deduce searching space of tag ID.Simulation results show that identification delay of PSMB algorithm is about 1/3 of QTalgorithm,tag average response times is about 1/4 of QTalgorithm,and system throughput rate is treble QTalgorithm.展开更多
Radio frequency identification(RFID) technology has been extensively used in various practical applications, such as inventory management and logistics control, with its outstanding features(e.g. non-line-ofsight read...Radio frequency identification(RFID) technology has been extensively used in various practical applications, such as inventory management and logistics control, with its outstanding features(e.g. non-line-ofsight reading and fast identification). And in a large RFID system, unknown tag identification uses total execution time as the performance criterion. However, the performance of existing protocols in terms of execution time is not ideal. To get better time efficiency, a novel unknown tag identification protocol(NUTIP) is proposed. The novelty of NUTIP is demonstrated mainly in two aspects: i) NUTIP deactivates some known tags and identifies or labels some unknown tags during its first phase to prevent these tags from interfering unknown tag identification. ii) We optimize the parameter settings to minimize the total execution time. Simulation experiments show that the proposed protocol is far superior to other relevant protocols and suitable for both sparse unknown tags environment and dense unknown tags environment.展开更多
The surface acoustic wave (SAW) identification (ID)-tags have great potential for application in radio frequency identification (RFID) due to their characteristics of wireless sensing and passive operation. In t...The surface acoustic wave (SAW) identification (ID)-tags have great potential for application in radio frequency identification (RFID) due to their characteristics of wireless sensing and passive operation. In the measurements based on the frequency domain sampling (FDS), to expand the range of detection and allow the system work in harsh environments, it is necessary to enhance the identification capability at low SNR. In addition, to identify the tags in real time, it is important to reduce identification time. Therefore, estimation of signal parameters based on the Procrustes rotations via the rotational invariance technique (PRO-ESPRIT) is adopted. Experimental results show that good identification capability is achieved with a relatively faster measurement speed.展开更多
Tag collision algorithm is a key issue for energy saving and throughput with Radio Frequency IDentification (RFID) system more popular in sensing infrastructure of covering wider area on a large scale. Exploiting low ...Tag collision algorithm is a key issue for energy saving and throughput with Radio Frequency IDentification (RFID) system more popular in sensing infrastructure of covering wider area on a large scale. Exploiting low energy consumption strategy would enable longer operational life of tags and reader with battery energy supply. And improving throughput is required on a large scale to preserve the capability of the correct reception. Therefore, this paper proposes an enhanced anti-collision algorithm called Dynamic Slotted with Muting (DSM), which uses multiple slots within a frame per node in a binary tree and takes tag estimation function to optimize the number of slots, and adds a mute command to put identified tags silence. The performance of the proposed algorithm is analytically provided, and simulation results show that DSM saves more than 40% energy consumptions both at reader and tags, and improves more than 35% throughput compared to the existing algorithms. Thus our algorithm is demonstrated to perform efficient energy savings at reader and tags with throughput improvement.展开更多
Improving customer experience has become a more and more important role in enhancing customer service in fashion retailing business. In this study, a kind of intelligent garment coordination and try-on system for fash...Improving customer experience has become a more and more important role in enhancing customer service in fashion retailing business. In this study, a kind of intelligent garment coordination and try-on system for fashion retailing was proposed. Radio Frequency Identification (RFID) technology was used to identify customer and garment item automatically. The intelligent procedure for garment coordination recommendation using Artificial Neural Network (ANN) was developed to imitate fashion designers' decision-making on garment coordination. Virtual try-on algorithm based on the customer's 2D/mago was accomplished using imagewarping technique. The system architecture and the software framework were also described. The results show that the 'system is a practical and useful application for fashion retailers.展开更多
Digitalization has nowadays raised interest in variable applications of farming.Increase of knowledge level,by means of unique identification,automation and control,farmers gain relevant business profit.This research ...Digitalization has nowadays raised interest in variable applications of farming.Increase of knowledge level,by means of unique identification,automation and control,farmers gain relevant business profit.This research is focused on the utilization of passive radio frequency identification(RFID)technology in silage bale application,both manual and automated level.Challenges arise due to silage conservation,varying environmental and seasonal conditions,different identification environments and RFID operation principle.Further maximum communication signal strength is limited by telecommunication standard regulations(e.g.,ETSI).The applicability of RFID technology with different commercial passive transponders is measured manually in a silage bale of 160 cm in diameter,covering 360 degrees around the bale.In addition,automated field tests are conducted in a real environment,where the data collection system is appended to a tractor and RFID reader antenna in a baler.Manual measurements are conducted as identification distance(meters)and transponder population(number of tags),while automated measurements are based on the number of successfully identified silage bales.Based on the manual measurement results,the most suitable tags for the automated field measurements were chosen,and the applicability to silage bale identification was verified.Field tests showed 100%success,with 151/151 uniquely identified silage bales.Achieved results prove that passive RFID operates well enough in silage bale identification,further enabling the development of digitalization of silage bale life cycle.展开更多
Indoor positioning systems (IPSs) have been intended to provide position information of persons and devices. Higher user percentage of handheld devices such as tablets or mobile phones had led to the development of a ...Indoor positioning systems (IPSs) have been intended to provide position information of persons and devices. Higher user percentage of handheld devices such as tablets or mobile phones had led to the development of a number of indoor positioning systems. In this research a work on a real time portable RFID indoor positioning device such as on smartphone will be performed. The personal networks will be designed to meet the users’ needs and interconnect users’ devices equipped with different communications technologies in various places to form one network for better result. Radio frequency identification (RFID) with directional antenna has proved its potential for locating objects in indoor environment. Hence, the proposed device idea will be used to exploit various unknown locations in an indoor environment such as college campus;this interpretation will rely on Wireless LAN, Received Signal Strength values from Access Points (AP) in specific mentioned arenas;these APs will be monitored constantly by RFID with directional antenna (DA) and handheld devices. For obtaining the better results from existing devices, algorithms of Range Estimation are proposed, which can be used on various handheld devices for locating indoor objects.展开更多
This paper presents a design for a self-powered radio frequency identification (RFID) tag with a thin film bulk acoustic reso- nating piezoelectric power supply (PPS), which can be used for portable remote temperature...This paper presents a design for a self-powered radio frequency identification (RFID) tag with a thin film bulk acoustic reso- nating piezoelectric power supply (PPS), which can be used for portable remote temperature monitoring. We call this system a PPS-RFID for short. The RFID systems have been found to have many applications in the internet of things (IOT) in the past decade. But semi-active RFID tags require an onboard battery which limits their applications in many fields. For these reasons, our research focuses on power sources for the RFID tags. This paper emphasizes the circuit design and simulation of PPS. In our tests, 0.283 mW was generated by PPS at 1 Hz vibration by a 650 N impact force. The results showed that the integrated PPS could supply sufficient power for the designed PPS-RFID tag. The PPS-RFID tag can be widely used for temperature monitoring during mobile transport of perishable items such as medicines or food.展开更多
基金The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. This paper is supported by the National Natural Science Founda- tion of China (No. 61371092), the Doctoral Fund of Ministry of Education of China (No.20130061120062), and the China Postdoc- toral Science Foundation (No. 2014M551184).
文摘Radio frequency identification(RFID) is a new type of non-contact automatic identification technology.Due to its low energy consumption,low cost,and its adaptability to harsh environments,it has been applied to many fields.In the RFID systems,data collision is inevitable when the reader sends a communication request and multiple tags respond with simultaneous data transmission.Data collision is prone to causing problems such as:identification delay,spectrum resource waste,a decreased system throughput rate,etc.Therefore,an efficient,stable anti-collision protocol is crucial for RFID systems.This research analysed the current research into RFID anticollision protocols and summarised means for its improvement through the mechanism of implementation of different types anticollision protocols.Finally,a new direction is proposed for the future development of RFID anti-collision protocol systems.
基金Supported by the Project of the National "948" (2006-Z12)
文摘As a kind of brand-new technology, radio frequency identification management, data control and acquisition. This paper introduced food safety system construction, analyzed the advantages and problems in dairy modem suggestions for solution according to the practical situation. (RFID) plays an important role in dairy information tracing and culture function extension of managing breeding technology, and finally put forward some
文摘A compact antenna formed by three concentric split rings for ultra-high frequency(UHF)radio frequency identification(RFID)tag is proposed in this paper.The antenna is composed of two parts,an outer short-circuited ring modified from a traditional split-ring resonator(SRR)antenna and an inner SRR load,so the antenna can be regarded as a short-circuited ring loaded with SRR.According to the transmission line theory,to conjugate match with the capacitive input-impedance of a tag chip,the length of the short-circuited ring isλg/4 shorter than that of an open-circuited dipole of a traditional SRR antenna,whereλg is the wavelengh of the operating frequency.Hence,the size of the proposed antenna is more compact than that of the traditional SRR antenna.Thereafter,the proposed antenna is simulated and optimized by ANSYS high-frequency structure simulator(HFSS).The impedance,efficiency,and mutual coupling of the fabricated antenna are tested in a reverberation chamber(RC).The results show that the size of the presented antenna is 83%smaller than that of the traditional SRR antenna and the proposed antenna can cover the whole UHF RFID operating frequency band worldwide(840—960 MHz).The measured read range of the tag exhibits maximum values of 45 cm in free space and 37 cm under dense tag environment.
基金National Natural Science Foundation of China(No.71301038)
文摘In order to construct a resource-saving and environment- friendly society, the advantages of radio frequency identification (RFID) were considered. And it put forward the idea of introducing RFID in the recycling activities of waste products. Taking into account such elements as the technical level of RFID, cost saving from remanufacturing and the cost of RFID tags, both centralized and decentralized supply chain models with different participants in waste product collection were created, in order to determine the optimal pricing strategy and RFID technical level. In the end, sensitivity analyses were conducted to analyze the impacts of scaling parameter for additional increased recovery rate with RFED on pricing and RFID technology level, and impacts of cost saving on the profits of participants in different remanufacturing closed-loop supply chain models.
基金supported in part by National Natural Science Foundation of China(U22B2004,62371106)in part by the Joint Project of China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.
基金supported by Natinoal Basic Research Program of China (973 Program, Grant No. 2011CB706805)National Natural Science Foundation of China (Grant No. 50875204)
文摘The method of acquiring the real-time data has influenced the implementation of the manufacturing execution system (MES). Accompanied with turning the MES into service-oriented manufacturing execution system (so-MES), real-time e-quality tracking (e-QT), in which real-time data are computed, has played more and more important roles in manufacturing. This paper presents an e-QT model through the study of real-time status data tracking and quality data collecting. An implementing architecture of the e-QT model is constructed on the basis of radio frequency identification devices (RFID) data-tracking network. In order to develop the e-QT system, some key enabling technologies, such as configuration, data collection, and data processing, etc, are studied. The relation schema between hardware is built for the RFID data-tracking network based on the configuration technique. Real-time data are sampled by using data collecting technique. Furthermore, real-time status and quality data in a shop-floor can be acquired in terms of using the real-time data computing method. Finally, a prototype system is developed and a running example is given so as to verify the feasibility of methods proposed in this paper. The proposed research provides effective e-quality tracking theoretical foundation through the use of RFID technology for the discrete manufacturing.
基金supported by the National Natural Science Foundation of China(61762093)the 17th Batches of Young and Middle-aged Leaders in Academic and Technical Reserved Talents Project of Yunnan Province(2014HB019)+1 种基金the Key Applied and Basic Research Foundation of Yunnan Province(2018FA036)the Program for Innovative Research Team(in Science and Technology)in University of Yunnan Province。
文摘In a passive ultra-high frequency(UHF)radio frequency identification(RFID)system,the recovery of collided tag signals on a physical layer can enhance identification efficiency.However,frequency drift is very common in UHF RFID systems,and will have an influence on the recovery on the physical layer.To address the problem of recovery with the frequency drift,this paper adopts a radial basis function(RBF)network to separate the collision signals,and decode the signals via FM0 to recovery collided RFID tags.Numerical results show that the method in this paper has better performance of symbol error rate(SER)and separation efficiency compared to conventional methods when frequency drift occurs.
基金the National Natural Science Foundation of China under Grant 61502411Natural Science Foundation of Jiangsu Province under Grant BK20150432 and BK20151299+7 种基金Natural Science Research Project for Universities of Jiangsu Province under Grant 15KJB520034China Postdoctoral Science Foundation under Grant 2015M581843Jiangsu Provincial Qinglan ProjectTeachers Overseas Study Program of Yancheng Institute of TechnologyJiangsu Provincial Government Scholarship for Overseas StudiesTalents Project of Yancheng Institute of Technology under Grant KJC2014038“2311”Talent Project of Yancheng Institute of TechnologyOpen Fund of Modern Agricultural Resources Intelligent Management and Application Laboratory of Huzhou Normal University.
文摘In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.
基金Project(2009BADB9B09)supported by the National Key Technologies R&D Program of China
文摘Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequency identification(RFID) has been widely used in warehouse for item identifying. Meanwhile, RFID technology also has great potential for pallets localization which is underutilized in warehouse management. RFID-based checking-in and inventory systems have been applied in warehouse management by many enterprises. Localization approach is studied, which is compatible with existing RFID checking-in and inventory systems. A novel RFID localization approach is proposed for pallets checking-in. Phase variation of nearby tags was utilized to estimate the position of added pallets. A novel inventory localization approach combing angle of arrival(AOA) measurement and received signal strength(RSS) is also proposed for pallets inventory. Experiments were carried out using standard UHF passive RFID system. Experimental results show an acceptable localization accuracy which can satisfy the requirement of warehouse management.
基金This work was supported by Taif University Researchers Supporting Project(TURSP)under number(TURSP-2020/10),Taif University,Taif,Saudi Arabia.
文摘Machine Learning has evolved with a variety of algorithms to enable state-of-the-art computer vision applications.In particular the need for automating the process of real-time food item identification,there is a huge surge of research so as to make smarter refrigerators.According to a survey by the Food and Agriculture Organization of the United Nations(FAO),it has been found that 1.3 billion tons of food is wasted by consumers around the world due to either food spoilage or expiry and a large amount of food is wasted from homes and restaurants itself.Smart refrigerators have been very successful in playing a pivotal role in mitigating this problem of food wastage.But a major issue is the high cost of available smart refrigerators and the lack of accurate design algorithms which can help achieve computer vision in any ordinary refrigerator.To address these issues,this work proposes an automated identification algorithm for computer vision in smart refrigerators using InceptionV3 and MobileNet Convolutional Neural Network(CNN)architectures.The designed module and algorithm have been elaborated in detail and are considerably evaluated for its accuracy using test images on standard fruits and vegetable datasets.A total of eight test cases are considered with accuracy and training time as the performance metric.In the end,real-time testing results are also presented which validates the system’s performance.
基金supported in part by the National Natural Science Foundation of China(61762093)the 17th Batch of Young and Middle-aged Leaders in Academic and Technical Reserved Talents Project of Yunnan Province(2014HB019)the Program for Innovative Research Team(in Science and Technology)in University of Yunnan Province
文摘Dynamic framed slotted Aloha algorithm is one of popular passive radio frequency identification(RFID) tag anticollision algorithms. In the algorithm, a frame length requires dynamical adjustment to achieve higher identification efficiency.Generally, the adjustment of the frame length is not only related to the number of tags, but also to the occurrence probability of capture effect. Existing algorithms could estimate both the number of tags and the probability of capture effect. Under large-scale RFID tag identification, however, the number of tags would be much larger than an initial frame length. In this scenario, the existing algorithm's estimation errors would substantially increase. In this paper, we propose a novel algorithm called capture-aware Bayesian estimate, which adopts Bayesian rules to accurately estimate the number and the probability simultaneously. From numerical results, the proposed algorithm adapts well to the large-scale RFID tag identification. It has lower estimation errors than the existing algorithms. Further,the identification efficiency from the proposed estimate is also higher than the existing algorithms.
基金partly funded by Ministry of Science and Technology of R.O.C. under grants no.NSC 101-2221-E-197008-MY3
文摘In recent years, the application of the Internet of Things (IoT) has become an emerging business. The most important concept of next-generation network for providing a common global IT platform is combining seamless networks and networked things, objects or sensors. Also, wireless body area networks (WBANs) are becoming mature with the widespread usage of the IoT. In order to support WBAN, the platform, scenario and emergency service are necessary due to the sensors in WBAN being related to wearer's life. The sensors on the body detect a lot of information about bioinformatics and medical signals, such as heartbeat and blood. Thus, the integration of IoT and network communication in daily life is important. However, there is not only a lack of common fabric for integrating IoT with current Internet and but also no emergency call process in the current network communication envi-ronment. To overcome such situations, the prototype of integrating IoT and emergency call process is discussed. A simulated boot-strap platform to provide the discussion of open challenges and solutions for deploying IoT in Internet and the emergency commu-nication system are analyzed by using a service of 3GPP IP multimedia subsystem. Finally, the prototype for supporting WBAN with emergence service is also addressed and the performance results are useful to service providers and network operators that they can estimate their migration to IoT by referring to this experience and experiment results. Furthermore, the queuing model used to achieve the performance of emergency service in IMS and the delay time of the proposed model is analyzed.
基金Sponsored by the National Natural Science Foundation of China(60372042)
文摘Identifying speed,tag average response times and reliability are the most important capabilities in passive RFID(radio frequency identification) system.QT(query tree) is a famous algorithm for lowest-cost RFID tags,but its shortcoming is high searching delay and high tag average response times.A prefix subsection matching binary(PSMB) algorithm based on QTalgorithm is proposed.The key idea of PSMB anti-collision algorithm is that,during searching phase,a given reader uses the particular tags ID,which has been searched out formerly,to shorten searching delay and depress tag average response times.The idea of PSMB algorithm can be described as follows.Usually,tag ID is composed of several subsections which have different meanings.Based on the tags ID searched out formerly,a given reader builds a prefix database.In subsequent searching phase,the reader uses its prefix database to deduce searching space of tag ID.Simulation results show that identification delay of PSMB algorithm is about 1/3 of QTalgorithm,tag average response times is about 1/4 of QTalgorithm,and system throughput rate is treble QTalgorithm.
基金supported by the National Natural Science Foundation of China (No. 61371092)the National Natural Science Foundation of China (No. 61540022)the Graduate Innovation Fund of Jilin University Project (No. 2016091)
文摘Radio frequency identification(RFID) technology has been extensively used in various practical applications, such as inventory management and logistics control, with its outstanding features(e.g. non-line-ofsight reading and fast identification). And in a large RFID system, unknown tag identification uses total execution time as the performance criterion. However, the performance of existing protocols in terms of execution time is not ideal. To get better time efficiency, a novel unknown tag identification protocol(NUTIP) is proposed. The novelty of NUTIP is demonstrated mainly in two aspects: i) NUTIP deactivates some known tags and identifies or labels some unknown tags during its first phase to prevent these tags from interfering unknown tag identification. ii) We optimize the parameter settings to minimize the total execution time. Simulation experiments show that the proposed protocol is far superior to other relevant protocols and suitable for both sparse unknown tags environment and dense unknown tags environment.
文摘The surface acoustic wave (SAW) identification (ID)-tags have great potential for application in radio frequency identification (RFID) due to their characteristics of wireless sensing and passive operation. In the measurements based on the frequency domain sampling (FDS), to expand the range of detection and allow the system work in harsh environments, it is necessary to enhance the identification capability at low SNR. In addition, to identify the tags in real time, it is important to reduce identification time. Therefore, estimation of signal parameters based on the Procrustes rotations via the rotational invariance technique (PRO-ESPRIT) is adopted. Experimental results show that good identification capability is achieved with a relatively faster measurement speed.
基金Supported by the Chongqing Education Administration Program Foundation of China (No.KJ110516)the Chongqing Natural Science Foundation of China (No.cstc2011jjA40014, No.cstc2011A40028)
文摘Tag collision algorithm is a key issue for energy saving and throughput with Radio Frequency IDentification (RFID) system more popular in sensing infrastructure of covering wider area on a large scale. Exploiting low energy consumption strategy would enable longer operational life of tags and reader with battery energy supply. And improving throughput is required on a large scale to preserve the capability of the correct reception. Therefore, this paper proposes an enhanced anti-collision algorithm called Dynamic Slotted with Muting (DSM), which uses multiple slots within a frame per node in a binary tree and takes tag estimation function to optimize the number of slots, and adds a mute command to put identified tags silence. The performance of the proposed algorithm is analytically provided, and simulation results show that DSM saves more than 40% energy consumptions both at reader and tags, and improves more than 35% throughput compared to the existing algorithms. Thus our algorithm is demonstrated to perform efficient energy savings at reader and tags with throughput improvement.
基金National Nature Science Foundations of China (No.60975059, No.60775052)Specialized Research Fund for the Doctoral Program of Higher Education from Ministry of Education of China (No.20090075110002)Projects of Shanghai Committee of Science and Technology, China (No.09JC1400900, No.08JC1400100, No.10DZ0506500)
文摘Improving customer experience has become a more and more important role in enhancing customer service in fashion retailing business. In this study, a kind of intelligent garment coordination and try-on system for fashion retailing was proposed. Radio Frequency Identification (RFID) technology was used to identify customer and garment item automatically. The intelligent procedure for garment coordination recommendation using Artificial Neural Network (ANN) was developed to imitate fashion designers' decision-making on garment coordination. Virtual try-on algorithm based on the customer's 2D/mago was accomplished using imagewarping technique. The system architecture and the software framework were also described. The results show that the 'system is a practical and useful application for fashion retailers.
文摘Digitalization has nowadays raised interest in variable applications of farming.Increase of knowledge level,by means of unique identification,automation and control,farmers gain relevant business profit.This research is focused on the utilization of passive radio frequency identification(RFID)technology in silage bale application,both manual and automated level.Challenges arise due to silage conservation,varying environmental and seasonal conditions,different identification environments and RFID operation principle.Further maximum communication signal strength is limited by telecommunication standard regulations(e.g.,ETSI).The applicability of RFID technology with different commercial passive transponders is measured manually in a silage bale of 160 cm in diameter,covering 360 degrees around the bale.In addition,automated field tests are conducted in a real environment,where the data collection system is appended to a tractor and RFID reader antenna in a baler.Manual measurements are conducted as identification distance(meters)and transponder population(number of tags),while automated measurements are based on the number of successfully identified silage bales.Based on the manual measurement results,the most suitable tags for the automated field measurements were chosen,and the applicability to silage bale identification was verified.Field tests showed 100%success,with 151/151 uniquely identified silage bales.Achieved results prove that passive RFID operates well enough in silage bale identification,further enabling the development of digitalization of silage bale life cycle.
文摘Indoor positioning systems (IPSs) have been intended to provide position information of persons and devices. Higher user percentage of handheld devices such as tablets or mobile phones had led to the development of a number of indoor positioning systems. In this research a work on a real time portable RFID indoor positioning device such as on smartphone will be performed. The personal networks will be designed to meet the users’ needs and interconnect users’ devices equipped with different communications technologies in various places to form one network for better result. Radio frequency identification (RFID) with directional antenna has proved its potential for locating objects in indoor environment. Hence, the proposed device idea will be used to exploit various unknown locations in an indoor environment such as college campus;this interpretation will rely on Wireless LAN, Received Signal Strength values from Access Points (AP) in specific mentioned arenas;these APs will be monitored constantly by RFID with directional antenna (DA) and handheld devices. For obtaining the better results from existing devices, algorithms of Range Estimation are proposed, which can be used on various handheld devices for locating indoor objects.
基金supported by the MEMS subject construction fund of the Kunming University of Science and Technology (Grant No. 14078024)
文摘This paper presents a design for a self-powered radio frequency identification (RFID) tag with a thin film bulk acoustic reso- nating piezoelectric power supply (PPS), which can be used for portable remote temperature monitoring. We call this system a PPS-RFID for short. The RFID systems have been found to have many applications in the internet of things (IOT) in the past decade. But semi-active RFID tags require an onboard battery which limits their applications in many fields. For these reasons, our research focuses on power sources for the RFID tags. This paper emphasizes the circuit design and simulation of PPS. In our tests, 0.283 mW was generated by PPS at 1 Hz vibration by a 650 N impact force. The results showed that the integrated PPS could supply sufficient power for the designed PPS-RFID tag. The PPS-RFID tag can be widely used for temperature monitoring during mobile transport of perishable items such as medicines or food.