Graphene is considered as a promising material to construct field-effect transistors (FETs) for high frequency electronic applications due to its unique structure and properties,mainly including extremely high carrier...Graphene is considered as a promising material to construct field-effect transistors (FETs) for high frequency electronic applications due to its unique structure and properties,mainly including extremely high carrier mobility and saturation velocity,the ultimate thinnest body and stability.Through continuously scaling down the gate length and optimizing the structure,the cut-off frequency of graphene FET (GFET) was rapidly increased and up to about 300 GHz,and further improvements are also expected.Because of the lack of an intrinsic band gap,the GFETs present typical ambipolar transfer characteristic without off state,which means GFETs are suitable for analog electronics rather than digital applications.Taking advantage of the ambipolar characteristic,GFET is demonstrated as an excellent building block for ambipolar electronic circuits,and has been used in applications such as highperformance frequency doublers,radio frequency mixers,digital modulators,and phase detectors.展开更多
We report on a demonstration of top-gated graphene field-effect transistors(FETs) fabricated on epitaxial SiC substrate.Composite stacks,benzocyclobutene and atomic layer deposition Al2O3,are used as the gate dielectr...We report on a demonstration of top-gated graphene field-effect transistors(FETs) fabricated on epitaxial SiC substrate.Composite stacks,benzocyclobutene and atomic layer deposition Al2O3,are used as the gate dielectrics to maintain intrinsic carrier mobility of graphene.All graphene FETs exhibit n-type transistor characteristics and the drain current is nearly linear dependence on gate and drain voltages.Despite a low field-effect mobility of 40 cm2/(V s),a maximum cutoff frequency of 4.6 GHz and a maximum oscillation frequency of 1.5 GHz were obtained for the graphene devices with a gate length of 1 μm.展开更多
基金supported by the Ministry of Science and Technology of China(2011CB933001and2011CB933002)the National Natural Science Foundation of China(61071013)
文摘Graphene is considered as a promising material to construct field-effect transistors (FETs) for high frequency electronic applications due to its unique structure and properties,mainly including extremely high carrier mobility and saturation velocity,the ultimate thinnest body and stability.Through continuously scaling down the gate length and optimizing the structure,the cut-off frequency of graphene FET (GFET) was rapidly increased and up to about 300 GHz,and further improvements are also expected.Because of the lack of an intrinsic band gap,the GFETs present typical ambipolar transfer characteristic without off state,which means GFETs are suitable for analog electronics rather than digital applications.Taking advantage of the ambipolar characteristic,GFET is demonstrated as an excellent building block for ambipolar electronic circuits,and has been used in applications such as highperformance frequency doublers,radio frequency mixers,digital modulators,and phase detectors.
基金supported by the National Science and Technology Major Project(2011ZX02707.3)the National Basic Research Program of China(2011CB932700)the National Natural Science Foundation of China(61136005,50972162,51072223 and 61006063)
文摘We report on a demonstration of top-gated graphene field-effect transistors(FETs) fabricated on epitaxial SiC substrate.Composite stacks,benzocyclobutene and atomic layer deposition Al2O3,are used as the gate dielectrics to maintain intrinsic carrier mobility of graphene.All graphene FETs exhibit n-type transistor characteristics and the drain current is nearly linear dependence on gate and drain voltages.Despite a low field-effect mobility of 40 cm2/(V s),a maximum cutoff frequency of 4.6 GHz and a maximum oscillation frequency of 1.5 GHz were obtained for the graphene devices with a gate length of 1 μm.