We used the Five-hundred-meter Aperture Spherical radio Telescope(FAST)to search for the molecular emissions in the L-band between 1.0 and 1.5 GHz toward four comets,C/2020 F3(NEOWISE),C/2020 R4(ATLAS),C/2021 A1(Leona...We used the Five-hundred-meter Aperture Spherical radio Telescope(FAST)to search for the molecular emissions in the L-band between 1.0 and 1.5 GHz toward four comets,C/2020 F3(NEOWISE),C/2020 R4(ATLAS),C/2021 A1(Leonard),and 67P/Churyumov-Gerasimenko during or after their perihelion passages.Thousands of molecular transition lines fall in this low-frequency range,many attributed to complex organic or prebiotic molecules.We conducted a blind search for the possible molecular lines in this frequency range in those comets and could not identify clear signals of molecular emissions in the data.Although several molecules have been detected at high frequencies of greater than100 GHz in comets,our results confirm that it is challenging to detect molecular transitions in the L-band frequency ranges.The non-detection of L-band molecular lines in the cometary environment could rule out the possibility of unusually strong lines,which could be caused by the masers or non-LTE effects.Although the line strengths are predicted to be weak,for FAST,using the ultra-wide bandwidth receiver and improving the radio frequency interference environments would enhance the detectability of those molecular transitions at low frequencies in the future.展开更多
The Submillimeter Wave Astronomy Satellite(SWAS)was the first space telescope capable of high spectral resolution observations of terahertz spectral lines.We have investigated the integration ability of its two receiv...The Submillimeter Wave Astronomy Satellite(SWAS)was the first space telescope capable of high spectral resolution observations of terahertz spectral lines.We have investigated the integration ability of its two receivers and spectrometer during five and a half years of on-orbit operation.The CI,O_(2),H_(2)O,and^(13)CO spectra taken toward all observed Galactic sources were analyzed.The present results are based on spectra with a total integration time of up to 2.72×10~4hr(■10~8s).The noise in the spectra is generally consistent with that expected from the radiometer equation,without any sign of approaching a noise floor.This noise performance reflects the extremely stable performance of the passively cooled front end as well as other relevant components in the SWAS instrument throughout its mission lifetime.展开更多
For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplit...For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplitude and repetition rate of induced corona current,by using the probability theory and mathematical statistics,we establish a stochastic model for the wide-sense stationary random process of corona discharges.Then combining the stochastic model with model-propagation-analysis method,the RI levels under three-phase UHV AC transmission lines are calculated.The results of the calculation based on stochastic model method and International Council on Large Electric Systems(CIGRE) excitation function are compared with that based on semi-empirical method and some other excitation functions.The stochastic model based on different excitation functions is also adopted to simulate the RI levels under finite test lines with two opened terminations.The results indicate that with the same average maximum gradient on conductor surface and the same conductor type,the number of corona discharge per unit length is one of the main reasons that causes the difference between different excitation functions.It is also concluded that for a long test line,the effect of standing wave on RI field strength is negligible in the middle of the line,but obvious near both terminations: for a 10-km line,the maximum difference in RI field strength is 2.78 dB,between the peak value of the standing wave near the ends and the steady value near the middle of the line.展开更多
Hα(Balmer-alpha), Hβ (Balmer-beta) and Hγ (Balmer-gamma) spectral line inten- sities in atomic hydrogen plasma are investigated by using a high-power RF source. The intensities of the Hα, Hβ and Hγ spectra...Hα(Balmer-alpha), Hβ (Balmer-beta) and Hγ (Balmer-gamma) spectral line inten- sities in atomic hydrogen plasma are investigated by using a high-power RF source. The intensities of the Hα, Hβ and Hγ spectral lines are detected by increasing the input power (0-6 kW) of ICPs (inductively coupled plasmas). With the increase of net input power, the intensity of Hα im- proves rapidly (0-2 kW), and then reaches its dynamic equilibrium; the intensities of Hβ can be divided into three processes: obvious increase (0-2 kW), rapid increase (2-4 kW), almost constant (4-6 kW); while the intensities of Hγ increase very slowly. The energy levels of the excited hydro- gen atoms and the splitting energy levels produced by an obvious Stark effect play an important role in the results.展开更多
There is a puzzling astrophysical result concerning the latest observation of the absorption profile of the redshifted radio line 21 cm from the early Universe(as described in Bowman et al.). The amplitude of the prof...There is a puzzling astrophysical result concerning the latest observation of the absorption profile of the redshifted radio line 21 cm from the early Universe(as described in Bowman et al.). The amplitude of the profile was more than a factor of two greater than the largest predictions. This could mean that the primordial hydrogen gas was much cooler than expected. Some explanations in the literature suggested a possible cooling of baryons either by unspecified dark matter particles or by some exotic dark matter particles with a charge a million times smaller than the electron charge. Other explanations required an additional radio background. In the present paper, we entertain a possible different explanation for the above puzzling observational result: the explanation is based on the alternative kind of hydrogen atoms(AKHA),whose existence was previously demonstrated theoretically, as well as by the analysis of atomic experiments. Namely, the AKHA are expected to decouple from the cosmic microwave background(CMB) much earlier(in the course of the Universe expansion) than usual hydrogen atoms, so that the AKHA temperature is significantly lower than that of usual hydrogen atoms. This seems to lower the excitation(spin) temperature of the hyperfine doublet(responsible for the 21 cm line) sufficiently enough for explaining the above puzzling observational result. This possible explanation appears to be more specific and natural than the previous possible explanations. Further observational studies of the redshifted 21 cm radio line from the early Universe could help to verify which explanation is the most relevant.展开更多
H Ⅱ regions made of gas ionized by radiations from young massive stars,are widely distributed in the Milky Way.They are tracers for star formation,and their distributions are correlated with the Galactic spiral struc...H Ⅱ regions made of gas ionized by radiations from young massive stars,are widely distributed in the Milky Way.They are tracers for star formation,and their distributions are correlated with the Galactic spiral structure.Radio recombination lines(RRLs) of hydrogen and other atoms allow for the most precise determination of physical parameters such as temperature and density.However,RRLs at around 1.4 GHz from HⅡ regions are weak and their detections are difficult.As a result,only a limited number of detections have been obtained yet.The 19-beam receiver on board of the Five-hundred-meter Aperture Spherical radio Telescope(FAST) can simultaneously cover 23 RRLs for Hnα,Henα,and Cnα(n=164-186),respectively.This,combined with its unparalleled collecting area,makes FAST the most powerful telescope to detect weak RRLs.In this pilot survey,we use FAST to observe nine HⅡ regions at L band.We allocate20 minutes pointing time for each source to achieve a sensitivity of around 9 mK in a velocity resolution of2.0 km s^(-1).In total,21 RRLs for Hnα and Cnα at 1.0-1.5 GHz have been simultaneously detected with strong emission signals.Overall,the detection rates for the H167α and C167α RRLs are 100%,while that for the He167α RRL is 33.3%.Using hydrogen and helium RRLs,we measure the electron density,electron temperature,and pressure for three HⅡ regions.This pilot survey demonstrates the capability of FAST in RRL measurements,and a statistically meaningful sample with RRL detection,through which knowledge about Galactic spiral structure and evolution can be obtained,is expected in the future.展开更多
X-ray emission lines have been observed in X-ray afterglows of several T-ray bursts (GRBs). It is a major breakthrough for understanding the nature of the progenitors. It has been proposed that the X-ray emission li...X-ray emission lines have been observed in X-ray afterglows of several T-ray bursts (GRBs). It is a major breakthrough for understanding the nature of the progenitors. It has been proposed that the X-ray emission lines can be well explained by the Geometry-Dominated models, but in these models the illuminat- ing angle is much larger than that of the collimated jet of the GRB. For GRB 011211, we have obtained an illuminating angle of about 0 - 45°, while the angle of the GRB jet is only 3.6°. So we propose that the outflow of GRBs with emission lines should have two distinct components: a wide component that illuminates the reprocessing material and produces the emission lines and a narrow one that produces the GRB. Observations show the energy for producing the emission lines is higher than that of the GRB. In this case, when the wide component dominates the afterglows, a bump should appear in the GRB afterglow. For GRB 011211, the bump should occur within 0.05 days of the GRB, which is obviously too early for the observation to catch it. Alongside the X-ray emission lines there should also be a bright emission component between the UV and the soft X-rays. These features can be tested by the Swift satellite in the near future.展开更多
大质量恒星强烈的反馈深刻影响其周围的星际介质,并可能触发下一代恒星形成.S187是位于银河系第2象限的大质量恒星形成区,呈现出“扫集-坍缩”的触发式恒星形成模式.基于“银河画卷”巡天^(12)CO/^(13)CO/C^(18)O(J=1-0,下文J=1-0为简...大质量恒星强烈的反馈深刻影响其周围的星际介质,并可能触发下一代恒星形成.S187是位于银河系第2象限的大质量恒星形成区,呈现出“扫集-坍缩”的触发式恒星形成模式.基于“银河画卷”巡天^(12)CO/^(13)CO/C^(18)O(J=1-0,下文J=1-0为简便起见省略)谱线数据,对S187区域分子云的基本性质开展了研究,探索了该区域大质量恒星对分子云的反馈.利用GaussPy+和聚类算法,在该区域证认了32个分子云,并结合Gaia(Global Astrometric Interferometer for Astrophysics)卫星恒星消光数据测量得到其中8个分子云的距离.S187区域由^(13)CO和C^(18)O示踪的相对致密的气体含量相比于银道面第2象限大部分区域的分子云高出1–2个量级.S187区域分子云中证认了243个^(13)CO团块和98个C^(18)O团块,其中有7个^(13)CO团块和5个C^(18)O团块有形成大质量恒星的潜力.研究结果显示,大质量恒星的反馈对其周围分子云的聚集作用明显,为下一代大质量恒星的形成提供了条件.展开更多
We present resolved Giant Metrewave Radio Telescope H I observations of the high gas-phase metallicity dwarf galaxy WISEA J230615.06+143927.9(z = 0.005)(hereafter J2306) and investigate whether it could be a Tidal Dwa...We present resolved Giant Metrewave Radio Telescope H I observations of the high gas-phase metallicity dwarf galaxy WISEA J230615.06+143927.9(z = 0.005)(hereafter J2306) and investigate whether it could be a Tidal Dwarf Galaxy(TDG) candidate. TDGs are observed to have higher metallicities than normal dwarfs. J2306 has an unusual combination of a blue g-r color of 0.23 mag, irregular optical morphology and high-metallicity(12 +log(O/H) = 8.68 ± 0.14), making it an interesting galaxy to study in more detail. We find J2306 to be an H I rich galaxy with a large extended, unperturbed rotating H I disk. Using our H I data we estimated its dynamical mass and found the galaxy to be dark matter(DM) dominated within its H I radius. The quantity of DM, inferred from its dynamical mass, appears to rule out J2306 as an evolved TDG. A wide area environment search reveals J2306 to be isolated from any larger galaxies which could have been the source of its high gas metallicity. Additionally, the H I morphology and kinematics of the galaxy show no indication of a recent merger to explain the high-metallicity.Further detailed optical spectroscopic observations of J2306 might provide an answer to how a seemingly ordinary irregular dwarf galaxy achieved such a high level of metal enrichment.展开更多
Molecular oxygen abundance is a key parameter in understanding the chemical network of the interstellar medium.We estimate the molecular oxygen column density and abundance for a sample of Galactic massive star format...Molecular oxygen abundance is a key parameter in understanding the chemical network of the interstellar medium.We estimate the molecular oxygen column density and abundance for a sample of Galactic massive star formation regions based on observations from the Submillimiter Wave Astronomy Satellite(SWAS)survey.We obtained an averaged O_(2)spectrum based on this sample using the(SWAS)survey data(O_(2),487.249 GHz,N=3-1,J=3-2).No emission or absorption feature is seen around the supposed central velocity with a total integration time of t_(total)=8.67×10^(3)hr and an rms noise per channel of 1.45 m K.Assuming a kinetic temperature T_(kin)=30 K,we derive the 3σupper limit of the O_(2)column density to be 3.3×10^(15)cm^(-2),close to the lowest values reported in Galactic massive star formation regions in previous studies.The corresponding O_(2)abundance upper limit is6.7×10^(-8),lower than all previous results based on SWAS observations and is close to the lowest reported value in massive star formation regions.On a galactic scale,our statistical results confirm a generally low O_(2)abundance for Galactic massive star formation regions.This abundance is also lower than results reported in extragalactic sources.展开更多
With the exceptional sensitivity of the Five-hundred-meter Aperture Spherical radio Telescope,we conducted observations of the neutral hydrogen(HⅠ)in the circumgalactic medium of Andromeda’s(M31)satellite galaxies,s...With the exceptional sensitivity of the Five-hundred-meter Aperture Spherical radio Telescope,we conducted observations of the neutral hydrogen(HⅠ)in the circumgalactic medium of Andromeda’s(M31)satellite galaxies,specifically AndromedaⅡ,NGC 205,and NGC 185.Initially,three drift scans were executed for these satellites,with a detection limit of 4×10^(18)cm^(-2)(approximately 1.88×10^(3)M_Θof HⅠmass),followed by a more in-depth scan of a specific region.We discovered a C-shaped HⅠarc structure sharing a position and line-of-sight velocity similar to a stellar ring structure around AndromedaⅡ,hinting at a potential connection with AndromedaⅡ.In the context of NGC 205,we identified two mass concentrations in the northeast direction,which could be indicative of tidal streams resulting from the interaction between this galaxy and M31.These new lumps discovered could be very helpful in solving the missing interstellar medium problem for NGC 205.Observations regarding NGC 185are consistent with previous studies,and we did not detect any additional HⅠmaterial around this galaxy.These observational results enhance our understanding of the evolution of these satellite galaxies and provide insight into their historical interactions with the galaxy M31.展开更多
I reminisce on my early life in Section 1;on my education in Sections 2 and 3;on the years at Princeton as a research astronomer in Section 4;on the years on the faculty at Chicago in Section 5;on research on Diffuse ...I reminisce on my early life in Section 1;on my education in Sections 2 and 3;on the years at Princeton as a research astronomer in Section 4;on the years on the faculty at Chicago in Section 5;on research on Diffuse Interstellar Bands(DIBs) in Section 6;on construction of the 3.5 m telescope at Apache Point Observatory(APO)in Section 7;on work on the Sloan Digital Sky Survey(SDSS) in Section 8;on work in public education in Chicago in Section 9;and on my travels in Section 10. My main science research is of an observational nature,concerning Galactic and intergalactic interstellar gas. Highlights for me included my work on the orbiting telescope Copernicus, including the discovery of interstellar deuterium;early observations of absorption associated with fivetimes ionized oxygen;and discoveries concerning the phases of gas in the local interstellar medium, based on previously unobservable interstellar UV spectral lines. With other instruments and collaborations, I extended interstellar UV studies to the intergalactic cool gas using quasi-stellar object QSO absorption lines redshifted to the optical part of the spectrum;provided a better definition of the emission and morphological character of the source of absorption lines in QSO spectra;and pursued the identification of the unidentified DIBs. For several of these topics, extensive collaborations with many scientists were essential over many years. The conclusions developed slowly, as I moved from being a graduate student at Chicago, to a research scientist position at Princeton and then to a faculty position at Chicago. At each stage of life, I was exposed to new technologies adaptable to my science and to subsequent projects. From high school days, I encountered several management opportunities which were formative. I have been extremely fortunate both in scientific mentors I had and in experimental opportunities I encountered.展开更多
为提高企业产品生产效率,降低企业离散制造生产线控制成本,研究基于射频识别(Radio Frequency IDentification,RFID)与条码技术的离散制造生产线控制方法。利用条码技术为每个物料分配一个条码,使用RFID技术为同类别的产品分配一个RFID标...为提高企业产品生产效率,降低企业离散制造生产线控制成本,研究基于射频识别(Radio Frequency IDentification,RFID)与条码技术的离散制造生产线控制方法。利用条码技术为每个物料分配一个条码,使用RFID技术为同类别的产品分配一个RFID标签,通过扫描标签与条码实现对生产过程和库存管理的控制,以及对离散制造生产线的全面控制。经过实践检验,该方法可以有效缩短产品出库、入库时间,提高产品生产效率,应用效果良好。展开更多
基金supported by a grant from the National Natural Science Foundation of China(NSFC)No.11988101by the NSFC grant Nos.11703047,11773041,U2031119,12173052,12173053,12373032,and 11963002+6 种基金support from the China Postdoctoral Science Foundation grant No.2023M733271the Foundation of Education Bureau of Guizhou Province,China(grant No.KY(2020)003)supported by the International Partnership Program of the Chinese Academy of Sciences,program No.114A11KYSB20210010the Youth Innovation Promotion Association of the Chinese Academy of Sciences(ID Nos.2023064,2018075,and Y2022027)the support from the National Key R&D Program of China grant Nos.2022YFC2205202 and 2020SKA0120100supported by the CAS“Light of West China”Programthe support by the NSFC grant No.12373026。
文摘We used the Five-hundred-meter Aperture Spherical radio Telescope(FAST)to search for the molecular emissions in the L-band between 1.0 and 1.5 GHz toward four comets,C/2020 F3(NEOWISE),C/2020 R4(ATLAS),C/2021 A1(Leonard),and 67P/Churyumov-Gerasimenko during or after their perihelion passages.Thousands of molecular transition lines fall in this low-frequency range,many attributed to complex organic or prebiotic molecules.We conducted a blind search for the possible molecular lines in this frequency range in those comets and could not identify clear signals of molecular emissions in the data.Although several molecules have been detected at high frequencies of greater than100 GHz in comets,our results confirm that it is challenging to detect molecular transitions in the L-band frequency ranges.The non-detection of L-band molecular lines in the cometary environment could rule out the possibility of unusually strong lines,which could be caused by the masers or non-LTE effects.Although the line strengths are predicted to be weak,for FAST,using the ultra-wide bandwidth receiver and improving the radio frequency interference environments would enhance the detectability of those molecular transitions at low frequencies in the future.
文摘The Submillimeter Wave Astronomy Satellite(SWAS)was the first space telescope capable of high spectral resolution observations of terahertz spectral lines.We have investigated the integration ability of its two receivers and spectrometer during five and a half years of on-orbit operation.The CI,O_(2),H_(2)O,and^(13)CO spectra taken toward all observed Galactic sources were analyzed.The present results are based on spectra with a total integration time of up to 2.72×10~4hr(■10~8s).The noise in the spectra is generally consistent with that expected from the radiometer equation,without any sign of approaching a noise floor.This noise performance reflects the extremely stable performance of the passively cooled front end as well as other relevant components in the SWAS instrument throughout its mission lifetime.
基金supported by Science and Technology Project of SGCC(SG1021)
文摘For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplitude and repetition rate of induced corona current,by using the probability theory and mathematical statistics,we establish a stochastic model for the wide-sense stationary random process of corona discharges.Then combining the stochastic model with model-propagation-analysis method,the RI levels under three-phase UHV AC transmission lines are calculated.The results of the calculation based on stochastic model method and International Council on Large Electric Systems(CIGRE) excitation function are compared with that based on semi-empirical method and some other excitation functions.The stochastic model based on different excitation functions is also adopted to simulate the RI levels under finite test lines with two opened terminations.The results indicate that with the same average maximum gradient on conductor surface and the same conductor type,the number of corona discharge per unit length is one of the main reasons that causes the difference between different excitation functions.It is also concluded that for a long test line,the effect of standing wave on RI field strength is negligible in the middle of the line,but obvious near both terminations: for a 10-km line,the maximum difference in RI field strength is 2.78 dB,between the peak value of the standing wave near the ends and the steady value near the middle of the line.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2011GB108011 and 2010GB103001)the Major International(Regional) Project Cooperation and Exchanges(No.11320101005)
文摘Hα(Balmer-alpha), Hβ (Balmer-beta) and Hγ (Balmer-gamma) spectral line inten- sities in atomic hydrogen plasma are investigated by using a high-power RF source. The intensities of the Hα, Hβ and Hγ spectral lines are detected by increasing the input power (0-6 kW) of ICPs (inductively coupled plasmas). With the increase of net input power, the intensity of Hα im- proves rapidly (0-2 kW), and then reaches its dynamic equilibrium; the intensities of Hβ can be divided into three processes: obvious increase (0-2 kW), rapid increase (2-4 kW), almost constant (4-6 kW); while the intensities of Hγ increase very slowly. The energy levels of the excited hydro- gen atoms and the splitting energy levels produced by an obvious Stark effect play an important role in the results.
文摘There is a puzzling astrophysical result concerning the latest observation of the absorption profile of the redshifted radio line 21 cm from the early Universe(as described in Bowman et al.). The amplitude of the profile was more than a factor of two greater than the largest predictions. This could mean that the primordial hydrogen gas was much cooler than expected. Some explanations in the literature suggested a possible cooling of baryons either by unspecified dark matter particles or by some exotic dark matter particles with a charge a million times smaller than the electron charge. Other explanations required an additional radio background. In the present paper, we entertain a possible different explanation for the above puzzling observational result: the explanation is based on the alternative kind of hydrogen atoms(AKHA),whose existence was previously demonstrated theoretically, as well as by the analysis of atomic experiments. Namely, the AKHA are expected to decouple from the cosmic microwave background(CMB) much earlier(in the course of the Universe expansion) than usual hydrogen atoms, so that the AKHA temperature is significantly lower than that of usual hydrogen atoms. This seems to lower the excitation(spin) temperature of the hyperfine doublet(responsible for the 21 cm line) sufficiently enough for explaining the above puzzling observational result. This possible explanation appears to be more specific and natural than the previous possible explanations. Further observational studies of the redshifted 21 cm radio line from the early Universe could help to verify which explanation is the most relevant.
基金support from the National Key R&D Program of China (2018YFE0202900)support by the NAOC Nebula Talents Program+2 种基金the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CASthe support from the Youth Innovation Promotion Association of CASsupported by the National Natural Science Foundation of China (Grant Nos.11703040,W820301904,11988101,11933011 and 11833009)。
文摘H Ⅱ regions made of gas ionized by radiations from young massive stars,are widely distributed in the Milky Way.They are tracers for star formation,and their distributions are correlated with the Galactic spiral structure.Radio recombination lines(RRLs) of hydrogen and other atoms allow for the most precise determination of physical parameters such as temperature and density.However,RRLs at around 1.4 GHz from HⅡ regions are weak and their detections are difficult.As a result,only a limited number of detections have been obtained yet.The 19-beam receiver on board of the Five-hundred-meter Aperture Spherical radio Telescope(FAST) can simultaneously cover 23 RRLs for Hnα,Henα,and Cnα(n=164-186),respectively.This,combined with its unparalleled collecting area,makes FAST the most powerful telescope to detect weak RRLs.In this pilot survey,we use FAST to observe nine HⅡ regions at L band.We allocate20 minutes pointing time for each source to achieve a sensitivity of around 9 mK in a velocity resolution of2.0 km s^(-1).In total,21 RRLs for Hnα and Cnα at 1.0-1.5 GHz have been simultaneously detected with strong emission signals.Overall,the detection rates for the H167α and C167α RRLs are 100%,while that for the He167α RRL is 33.3%.Using hydrogen and helium RRLs,we measure the electron density,electron temperature,and pressure for three HⅡ regions.This pilot survey demonstrates the capability of FAST in RRL measurements,and a statistically meaningful sample with RRL detection,through which knowledge about Galactic spiral structure and evolution can be obtained,is expected in the future.
基金Supported by the National Natural Science Foundation of China.
文摘X-ray emission lines have been observed in X-ray afterglows of several T-ray bursts (GRBs). It is a major breakthrough for understanding the nature of the progenitors. It has been proposed that the X-ray emission lines can be well explained by the Geometry-Dominated models, but in these models the illuminat- ing angle is much larger than that of the collimated jet of the GRB. For GRB 011211, we have obtained an illuminating angle of about 0 - 45°, while the angle of the GRB jet is only 3.6°. So we propose that the outflow of GRBs with emission lines should have two distinct components: a wide component that illuminates the reprocessing material and produces the emission lines and a narrow one that produces the GRB. Observations show the energy for producing the emission lines is higher than that of the GRB. In this case, when the wide component dominates the afterglows, a bump should appear in the GRB afterglow. For GRB 011211, the bump should occur within 0.05 days of the GRB, which is obviously too early for the observation to catch it. Alongside the X-ray emission lines there should also be a bright emission component between the UV and the soft X-rays. These features can be tested by the Swift satellite in the near future.
文摘大质量恒星强烈的反馈深刻影响其周围的星际介质,并可能触发下一代恒星形成.S187是位于银河系第2象限的大质量恒星形成区,呈现出“扫集-坍缩”的触发式恒星形成模式.基于“银河画卷”巡天^(12)CO/^(13)CO/C^(18)O(J=1-0,下文J=1-0为简便起见省略)谱线数据,对S187区域分子云的基本性质开展了研究,探索了该区域大质量恒星对分子云的反馈.利用GaussPy+和聚类算法,在该区域证认了32个分子云,并结合Gaia(Global Astrometric Interferometer for Astrophysics)卫星恒星消光数据测量得到其中8个分子云的距离.S187区域由^(13)CO和C^(18)O示踪的相对致密的气体含量相比于银道面第2象限大部分区域的分子云高出1–2个量级.S187区域分子云中证认了243个^(13)CO团块和98个C^(18)O团块,其中有7个^(13)CO团块和5个C^(18)O团块有形成大质量恒星的潜力.研究结果显示,大质量恒星的反馈对其周围分子云的聚集作用明显,为下一代大质量恒星的形成提供了条件.
基金support from the National Key Research and Development Program of China(2022SKA0130100)the National Natural Science Foundation of China (grant No. 12041306)+1 种基金supported by national funds through Fundacao para a Ciência e a Tecnologia (FCT)the Centro de Astrofísica da Universidade do Porto (CAUP)。
文摘We present resolved Giant Metrewave Radio Telescope H I observations of the high gas-phase metallicity dwarf galaxy WISEA J230615.06+143927.9(z = 0.005)(hereafter J2306) and investigate whether it could be a Tidal Dwarf Galaxy(TDG) candidate. TDGs are observed to have higher metallicities than normal dwarfs. J2306 has an unusual combination of a blue g-r color of 0.23 mag, irregular optical morphology and high-metallicity(12 +log(O/H) = 8.68 ± 0.14), making it an interesting galaxy to study in more detail. We find J2306 to be an H I rich galaxy with a large extended, unperturbed rotating H I disk. Using our H I data we estimated its dynamical mass and found the galaxy to be dark matter(DM) dominated within its H I radius. The quantity of DM, inferred from its dynamical mass, appears to rule out J2306 as an evolved TDG. A wide area environment search reveals J2306 to be isolated from any larger galaxies which could have been the source of its high gas metallicity. Additionally, the H I morphology and kinematics of the galaxy show no indication of a recent merger to explain the high-metallicity.Further detailed optical spectroscopic observations of J2306 might provide an answer to how a seemingly ordinary irregular dwarf galaxy achieved such a high level of metal enrichment.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11988101 and12041302)the International Partnership Program of the Chinese Academy of Sciences(grant No.114A11KYSB20210010)+5 种基金National Key R&D Program of China No.2023YFA1608004operated by the California Institute of Technology under a contract with the National Aeronautics and Space Administration(80NM0018D0004)the support of the Tianchi Talent Program of Xinjiang Uygur Autonomous Regionthe Collaborative Research Center 1601(SFB 1601 sub-project A2)funded by the Deutsche Forschungsgemeinschaft—500700252support from the University of Cologne and its Global Faculty program。
文摘Molecular oxygen abundance is a key parameter in understanding the chemical network of the interstellar medium.We estimate the molecular oxygen column density and abundance for a sample of Galactic massive star formation regions based on observations from the Submillimiter Wave Astronomy Satellite(SWAS)survey.We obtained an averaged O_(2)spectrum based on this sample using the(SWAS)survey data(O_(2),487.249 GHz,N=3-1,J=3-2).No emission or absorption feature is seen around the supposed central velocity with a total integration time of t_(total)=8.67×10^(3)hr and an rms noise per channel of 1.45 m K.Assuming a kinetic temperature T_(kin)=30 K,we derive the 3σupper limit of the O_(2)column density to be 3.3×10^(15)cm^(-2),close to the lowest values reported in Galactic massive star formation regions in previous studies.The corresponding O_(2)abundance upper limit is6.7×10^(-8),lower than all previous results based on SWAS observations and is close to the lowest reported value in massive star formation regions.On a galactic scale,our statistical results confirm a generally low O_(2)abundance for Galactic massive star formation regions.This abundance is also lower than results reported in extragalactic sources.
基金support of the China National Key Program for Science and Technology Research and Development of China(2022YFA1602901)the National Natural Science Foundation of China(NSFC,Grant Nos.11988101 and 11873051)+3 种基金the CAS Project for Young Scientists in Basic Research grant(No.YSBR-062)the K.C.Wong Education Foundationthe science research grants from the China Manned Space Projectsupport from the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CAS。
文摘With the exceptional sensitivity of the Five-hundred-meter Aperture Spherical radio Telescope,we conducted observations of the neutral hydrogen(HⅠ)in the circumgalactic medium of Andromeda’s(M31)satellite galaxies,specifically AndromedaⅡ,NGC 205,and NGC 185.Initially,three drift scans were executed for these satellites,with a detection limit of 4×10^(18)cm^(-2)(approximately 1.88×10^(3)M_Θof HⅠmass),followed by a more in-depth scan of a specific region.We discovered a C-shaped HⅠarc structure sharing a position and line-of-sight velocity similar to a stellar ring structure around AndromedaⅡ,hinting at a potential connection with AndromedaⅡ.In the context of NGC 205,we identified two mass concentrations in the northeast direction,which could be indicative of tidal streams resulting from the interaction between this galaxy and M31.These new lumps discovered could be very helpful in solving the missing interstellar medium problem for NGC 205.Observations regarding NGC 185are consistent with previous studies,and we did not detect any additional HⅠmaterial around this galaxy.These observational results enhance our understanding of the evolution of these satellite galaxies and provide insight into their historical interactions with the galaxy M31.
文摘I reminisce on my early life in Section 1;on my education in Sections 2 and 3;on the years at Princeton as a research astronomer in Section 4;on the years on the faculty at Chicago in Section 5;on research on Diffuse Interstellar Bands(DIBs) in Section 6;on construction of the 3.5 m telescope at Apache Point Observatory(APO)in Section 7;on work on the Sloan Digital Sky Survey(SDSS) in Section 8;on work in public education in Chicago in Section 9;and on my travels in Section 10. My main science research is of an observational nature,concerning Galactic and intergalactic interstellar gas. Highlights for me included my work on the orbiting telescope Copernicus, including the discovery of interstellar deuterium;early observations of absorption associated with fivetimes ionized oxygen;and discoveries concerning the phases of gas in the local interstellar medium, based on previously unobservable interstellar UV spectral lines. With other instruments and collaborations, I extended interstellar UV studies to the intergalactic cool gas using quasi-stellar object QSO absorption lines redshifted to the optical part of the spectrum;provided a better definition of the emission and morphological character of the source of absorption lines in QSO spectra;and pursued the identification of the unidentified DIBs. For several of these topics, extensive collaborations with many scientists were essential over many years. The conclusions developed slowly, as I moved from being a graduate student at Chicago, to a research scientist position at Princeton and then to a faculty position at Chicago. At each stage of life, I was exposed to new technologies adaptable to my science and to subsequent projects. From high school days, I encountered several management opportunities which were formative. I have been extremely fortunate both in scientific mentors I had and in experimental opportunities I encountered.
文摘为提高企业产品生产效率,降低企业离散制造生产线控制成本,研究基于射频识别(Radio Frequency IDentification,RFID)与条码技术的离散制造生产线控制方法。利用条码技术为每个物料分配一个条码,使用RFID技术为同类别的产品分配一个RFID标签,通过扫描标签与条码实现对生产过程和库存管理的控制,以及对离散制造生产线的全面控制。经过实践检验,该方法可以有效缩短产品出库、入库时间,提高产品生产效率,应用效果良好。