The surface accuracy of a radio telescope is directly related to its operational efficiency and detection sensitivity.This is crucial under high-frequency observation conditions,where surface shape errors need to be c...The surface accuracy of a radio telescope is directly related to its operational efficiency and detection sensitivity.This is crucial under high-frequency observation conditions,where surface shape errors need to be controlled to within 1/16 of the working wavelength.In addition,the primary reflector of large radio telescopes is subject to dynamic deformation,caused by factors such as gravity and thermal effects.This paper presents a method for detecting the surface shape of radio telescopes using radio interferometry techniques combined with active reflector adjustment technology.This enables accurate assessment and correction of surface errors,ensuring the electrical performance of the radio telescope.This study investigates the practical applications of high-precision measurement techniques,such as microwave holography,out-of-focus holography,and wavefront distortion methods at the Tianma 65 m radio telescope(TMRT).Furthermore,the study presents the construction method of gravity models at different elevation angles and demonstrates the efficacy of the active reflector model.The results of the measurements indicate that the application of these methods to the TMRT has led to a notable enhancement of the accuracy of the primary reflector and a substantial improvement in efficiency in the Q-band.Through a process of iterative measurements and adjustments,the surface shape error is ultimately reduced to 0.28 mm root mean square(RMS).展开更多
Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
来自人造卫星的信号是射电天文观测面临的主要射频干扰(radio frequency interference,RFI)之一,这些RFI会将天文信号掩埋,为天文信号的搜寻和分析带来困扰。为了缓减卫星对天文观测的影响,我们在之前的工作中为500 m口径球面射电望远镜...来自人造卫星的信号是射电天文观测面临的主要射频干扰(radio frequency interference,RFI)之一,这些RFI会将天文信号掩埋,为天文信号的搜寻和分析带来困扰。为了缓减卫星对天文观测的影响,我们在之前的工作中为500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)开发了卫星电磁干扰监测软件,主要包括卫星数据库、观测模块和监测模块。近年来随着多个巨型卫星星座的规划发射以及望远镜观测模式的增多,卫星对射电天文观测的影响更为复杂,已有的软件已经不能满足实际的需要。为此,本文在单个卫星干扰分析的基础上提出了卫星星座的干扰评估方法,并对已有监测软件进行了升级,升级后卫星数据库覆盖更多的在轨卫星及星座信息且能够自动化更新,观测模块能够支持更多种观测模式下的卫星过境预测和干扰评估。在实际天文观测中,通过接在FAST接收机上的频谱仪数据对软件的干扰预测结果进行了实验验证,结果证明升级后的软件能够在多种观测模式下预测可能威胁的卫星以及对应的过境时间,为望远镜观测规划的调整、卫星干扰的规避和接收系统的保护提供重要的支撑。展开更多
The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main ...The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main specifications,design,performance analysis,testing,and construction of the telescope antenna.The measured total efficiency is better than 50%over the whole elevation angle range,first sidelobe levels are less than−20 dB,antenna system noise temperatures are less than 70 K at 30°elevation angle,and pointing accuracy is less than 3″.The measured and calculated results are in good agreement,verifying the effectiveness of the design and analysis.展开更多
Fast radio bursts(FRBs) are highly dispersed millisecond-duration radio bursts,[1,2]of which the physical origin is still not fully understood. FRB 20201124A is one of the most actively repeating FRBs. In this paper, ...Fast radio bursts(FRBs) are highly dispersed millisecond-duration radio bursts,[1,2]of which the physical origin is still not fully understood. FRB 20201124A is one of the most actively repeating FRBs. In this paper, we present the collection of 1863 burst dynamic spectra of FRB 20201124A measured with the Five-hundred-meter Aperture Spherical radio Telescope(FAST). The current collection, taken from the observation during the FRB active phase from April to June 2021, is the largest burst sample detected for any FRB so far. The standard PSRFITs format is adopted, including dynamic spectra of the burst, and the time information of the dynamic spectra, in addition, mask files help readers to identify the pulse positions are also provided. The dataset is available in Science Data Bank, with the link https://www.doi.org/10.57760/sciencedb.j00113.00076.展开更多
为确定500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)与其周边公众移动通信(Public Mobile Telecommunications,PMT)系统的电磁兼容(electromagnetic compatibility,EMC)特性,本文综合论述了F...为确定500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)与其周边公众移动通信(Public Mobile Telecommunications,PMT)系统的电磁兼容(electromagnetic compatibility,EMC)特性,本文综合论述了FAST宁静区内中国移动、中国联通和中国电信三大运营商所属PMT基站对其产生的电磁干扰。首先,从射电天文业务的频谱划分谈起,论述了射电天文业务干扰源类型,引出了其运行保护标准,进而针对FAST详细说明了FAST宁静区的用频法规和保护要求;其次,分析了ITU-R建议电波传播预测与干扰分析方法,并通过实地测量验证了该方法的适用性,进一步针对性地分析了PMT基站的电磁辐射传播特性,综合评估了FAST宁静区内PMT基站的干扰情况:FAST宁静区域90.24%的PMT基站在一定程度上均会对FAST产生干扰,而在所选分析条件下,仅有43.14%的数据符合FAST保护要求;最后,针对PMT基站干扰信号的抑制和消除,分析了常用的射电天文射频干扰抑制方法,同时为保障FAST免受PMT基站干扰,从FAST和PMT基站的角度出发论述了可行的用频防护措施,并基于实施难度、经济成本、策略收益和通信质量4类指标建立了防护方法的评估体系,对所提防护方法进行了实例说明。上述研究成果可为保障FAST的安全观测提供技术基础。展开更多
The Five-hundred-meter Aperture Spherical Radio Telescope(FAST)Core Array is a proposed extension of FAST,integrating 24 secondary 40-m antennas implanted within 5 km of the FAST site.This original array design will c...The Five-hundred-meter Aperture Spherical Radio Telescope(FAST)Core Array is a proposed extension of FAST,integrating 24 secondary 40-m antennas implanted within 5 km of the FAST site.This original array design will combine the unprecedented sensitivity of FAST with a high angular resolution(4.3"at a frequency of 1.4 GHz),thereby exceeding the capabilities at similar frequencies of next-generation arrays such as the Square Kilometre Array Phase 1 or the next-generation Very Large Array.This article presents the technical specifications of the FAST Core Array,evaluates its potential relatively to existing radio telescope arrays,and describes its expected scientific prospects.The proposed array will be equipped with technologically advanced backend devices,such as real-time signal processing systems.A phased array feed receiver will be mounted on FAST to improve the survey efficiency of the FAST Core Array,whose broad frequency coverage and large field of view(FOV)will be essential to study transient cosmic phenomena such as fast radio bursts and gravitational wave events,to conduct surveys and resolve structures in neutral hydrogen galaxies,to monitor or detect pulsars,and to investigate exoplanetary systems.Finally,the FAST Core Array can strengthen China's major role in the global radio astronomy community,owing to a wide range of potential scientific applications from cosmology to exoplanet science.展开更多
The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X ...The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X bands,were completed between 2008 and 2012.From 2013 to 2017,four high-frequency receiving systems,including Ku,K,Ka,and Q bands,were constructed and their performance was comprehensively tested.There are three main innovations.(1)A fully movable large radio telescope system with advanced performance and complete functions has been built.(2)An advanced,reliable main reflector adjustment system has been completed,overcoming gravity deformation and creating a large antenna with a main reflective surface accuracy of 0.28 mm(root mean square)for any elevation.(3)Five innovative technologies have been developed to achieve high-precision pointing in any direction within 3″.The TMRT has made a crucial contribution to the orbital measurement and positioning of China’s lunar and deep space probes.Significantly enhancing China's ability to participate in international VLBI observations and radio astronomy,this has facilitated a series of achievements in observational radio astronomical research,in areas such as VLBI,spectral lines,and pulsars.展开更多
This paper presents an innovative surrogate modeling method using a graph neural network to compensate for gravitational and thermal deformation in large radio telescopes.Traditionally,rapid compensation is feasible f...This paper presents an innovative surrogate modeling method using a graph neural network to compensate for gravitational and thermal deformation in large radio telescopes.Traditionally,rapid compensation is feasible for gravitational deformation but not for temperature-induced deformation.The introduction of this method facilitates real-time calculation of deformation caused both by gravity and temperature.Constructing the surrogate model involves two key steps.First,the gravitational and thermal loads are encoded,which facilitates more efficient learning for the neural network.This is followed by employing a graph neural network as an end-to-end model.This model effectively maps external loads to deformation while preserving the spatial correlations between nodes.Simulation results affirm that the proposed method can successfully estimate the surface deformation of the main reflector in real-time and can deliver results that are practically indistinguishable from those obtained using finite element analysis.We also compare the proposed surrogate model method with the out-of-focus holography method and yield similar results.展开更多
The science of radio astronomy focuses on the observation and study of celestial objects by reading their radio waves. The 5 meter radio-telescope is able to observe different radio sources using a C-band LNB. This re...The science of radio astronomy focuses on the observation and study of celestial objects by reading their radio waves. The 5 meter radio-telescope is able to observe different radio sources using a C-band LNB. This research was essentially focused on Crab Nebula, also known as Taurus A. The study led to interesting observations, which were validated numerically using various scientific computing software. The radio waves emitted by Taurus A are readable by the RTL-SDR, a software defined radio receiver. This device is capable of reading radio frequencies in the range of 0.5 MHZ to 1700 MHZ.展开更多
By appealing to a quark nova(QN;the explosive transition of a neutron star to a quark star) in the wake of a core-collapse supernova(CCSN) explosion of a massive star,we develop a unified model for long duration gamma...By appealing to a quark nova(QN;the explosive transition of a neutron star to a quark star) in the wake of a core-collapse supernova(CCSN) explosion of a massive star,we develop a unified model for long duration gamma-ray bursts(LGRBs) and fast radio bursts(FRBs).The time delay(years to decades)between the SN and the QN,and the fragmented nature(i.e.,millions of chunks) of the relativistic QN ejecta are key to yielding a robust LGRB engine.In our model,an LGRB light curve exhibits the interaction of the fragmented QN ejecta with turbulent(i.e.,filamentary and magnetically saturated) SN ejecta which is shaped by its interaction with an underlying pulsar wind nebula(PWN).The afterglow is due to the interaction of the QN chunks,exiting the SN ejecta,with the surrounding medium.Our model can fit BAT/XRT prompt and afterglow light curves simultaneously with their spectra,thus yielding the observed properties of LGRBs(e.g.,the Band function and the X-ray flares).We find that the peak luminositypeak photon energy relationship(i.e.,the Yonetoku law),and the isotropic energy-peak photon energy relationship(i.e.,the Amati law) are not fundamental but phenomenological.FRB-like emission in our model results from coherent synchrotron emission(CSE) when the QN chunks interact with non-turbulent weakly magnetized PWN-SN ejecta,where conditions are prone to the Weibel instability.Magnetic field amplification induced by the Weibel instability in the shocked chunk frame sets the bunching length for electrons and pairs to radiate coherently.The resulting emission frequency,luminosity and duration in our model are consistent with FRB data.We find a natural unification of high-energy burst phenomena from FRBs(i.e.,those connected to CCSNe) to LGRBs including X-ray flashes(XRFs) and X-ray rich GRBs(XRR-GRBs) as well as superluminous SNe(SLSNe).We find a possible connection between ultra-high energy cosmic rays and FRBs and propose that a QN following a binary neutron star merger can yield a short duration GRB(SGRB) with fits to BAT/XRT light curves.展开更多
H Ⅱ regions made of gas ionized by radiations from young massive stars,are widely distributed in the Milky Way.They are tracers for star formation,and their distributions are correlated with the Galactic spiral struc...H Ⅱ regions made of gas ionized by radiations from young massive stars,are widely distributed in the Milky Way.They are tracers for star formation,and their distributions are correlated with the Galactic spiral structure.Radio recombination lines(RRLs) of hydrogen and other atoms allow for the most precise determination of physical parameters such as temperature and density.However,RRLs at around 1.4 GHz from HⅡ regions are weak and their detections are difficult.As a result,only a limited number of detections have been obtained yet.The 19-beam receiver on board of the Five-hundred-meter Aperture Spherical radio Telescope(FAST) can simultaneously cover 23 RRLs for Hnα,Henα,and Cnα(n=164-186),respectively.This,combined with its unparalleled collecting area,makes FAST the most powerful telescope to detect weak RRLs.In this pilot survey,we use FAST to observe nine HⅡ regions at L band.We allocate20 minutes pointing time for each source to achieve a sensitivity of around 9 mK in a velocity resolution of2.0 km s^(-1).In total,21 RRLs for Hnα and Cnα at 1.0-1.5 GHz have been simultaneously detected with strong emission signals.Overall,the detection rates for the H167α and C167α RRLs are 100%,while that for the He167α RRL is 33.3%.Using hydrogen and helium RRLs,we measure the electron density,electron temperature,and pressure for three HⅡ regions.This pilot survey demonstrates the capability of FAST in RRL measurements,and a statistically meaningful sample with RRL detection,through which knowledge about Galactic spiral structure and evolution can be obtained,is expected in the future.展开更多
Fast radio bursts(FRBs)are radio transients that are bright and have short duration,with their physical mechanism not being fully understood.We conducted a targeted search for bursts from FRB 20201124A between 2021 Ju...Fast radio bursts(FRBs)are radio transients that are bright and have short duration,with their physical mechanism not being fully understood.We conducted a targeted search for bursts from FRB 20201124A between 2021 June 2and July 20.High time-resolution data were collected for 104.5 hr using the ROACH2-based digital backend.We introduce the details of our FRB search pipeline which is based on HEIMDALL and FETCH.Testing of the injected mock FRBs search could help us better understand the performance of the pipelines,and improve the search algorithms and classifiers.To study the efficiency of our pipeline,5000 mock FRBs were injected into the data and searched using the pipeline.The results of the mock FRB search show that our pipeline can recover almost all(?90%)the injected mock FRBs above a signal-to-noise ratio(S/N)threshold of 15,and the performance is still acceptable(?80%)for injected S/Ns from 10 to 15.The recovery fraction displays relations with S/N,dispersion measure and pulse width.No bursts were detected from FRB 20201124A in the middle of 2021.The non-detection of FRB 20201124A may be due to its quiet phase window or no emission above the threshold of the Nanshan telescope.展开更多
Recently,a 16-day periodicity in a fast radio burst was reported.We propose that this 16-day periodicity may be due to forced precession of the neutron star by a fallback disk.When the rotation axis is misaligned with...Recently,a 16-day periodicity in a fast radio burst was reported.We propose that this 16-day periodicity may be due to forced precession of the neutron star by a fallback disk.When the rotation axis is misaligned with respect to the normal direction of the disk plane,the neutron star will precess.The eccentricity of the neutron star may be due to rotation or strong magnetic field,or similar reasons.We found that the 16-day period may be understood using typical masses of the fallback disk.Polarization observations and information about the neutron star rotation period may help to discriminate different models.The possible precession observations in pulsars,magnetars and fast radio bursts may be understood together considering forced precession by a fallback disk.展开更多
The Tianlai Dish Pathfinder Array is a radio interferometer array consisting of 16 six-meter dish antennas.The original digital backend integration time is at the seconds level,designed for H I intensity mapping exper...The Tianlai Dish Pathfinder Array is a radio interferometer array consisting of 16 six-meter dish antennas.The original digital backend integration time is at the seconds level,designed for H I intensity mapping experiment.A new digital backend with millisecond response is added to enable it to search for fast radio burst during its observations.The design and calibration of this backend,and the real time search pipeline for it are described in this paper.It is capable of forming 16 digital beams for each linear polarization,covering an area of 19.6 square degrees.The search pipeline is capable of searching for,recording and classifying FRBs automatically in real time.In commissioning,we succeeded in capturing the signal pulses from the pulsars PSR B0329+54 and B2021+51.展开更多
Fast radio bursts(FRBs) are extremely strong radio flares lasting several milliseconds,most of which come from unidentified objects at a cosmological distance.They can be apparently repeating or not.In this paper,we a...Fast radio bursts(FRBs) are extremely strong radio flares lasting several milliseconds,most of which come from unidentified objects at a cosmological distance.They can be apparently repeating or not.In this paper,we analyzed 18 repeaters and 12 non-repeating FRBs observed in the frequency bands of 400–800 MHz from Canadian Hydrogen Intensity Mapping Experiment(CHIME).We investigated the distributions of FRB isotropic-equivalent radio luminosity,considering the K correction.Statistically,the luminosity distribution can be better fitted by Gaussian form than by power-law.Based on the above results,together with the observed FRB event rate,pulse duration,and radio luminosity,FRB origin models are evaluated and constrained such that the gamma-ray bursts(GRBs) may be excluded for the non-repeaters while magnetars or neutron stars(NSs) emitting the supergiant pulses are preferred for the repeaters.We also found the necessity of a small FRB emission beaming solid angle(about 0.1 sr) from magnetars that should be considered,and/or the FRB association with soft gamma-ray repeaters(SGRs) may lie at a low probability of about 10%.Finally,we discussed the uncertainty of FRB luminosity caused by the estimation of the distance that is inferred by the simple relation between the redshift and dispersion measure(DM).展开更多
基金supported by the National Key R&D Program of China(2018YFA0404702,2019YFA0708904,2021YFC2203501)Shanghai Key Laboratory of Space Navigation and Positioning Techniques,the National Natural Science Foundation of China(12273097,11903068).
文摘The surface accuracy of a radio telescope is directly related to its operational efficiency and detection sensitivity.This is crucial under high-frequency observation conditions,where surface shape errors need to be controlled to within 1/16 of the working wavelength.In addition,the primary reflector of large radio telescopes is subject to dynamic deformation,caused by factors such as gravity and thermal effects.This paper presents a method for detecting the surface shape of radio telescopes using radio interferometry techniques combined with active reflector adjustment technology.This enables accurate assessment and correction of surface errors,ensuring the electrical performance of the radio telescope.This study investigates the practical applications of high-precision measurement techniques,such as microwave holography,out-of-focus holography,and wavefront distortion methods at the Tianma 65 m radio telescope(TMRT).Furthermore,the study presents the construction method of gravity models at different elevation angles and demonstrates the efficacy of the active reflector model.The results of the measurements indicate that the application of these methods to the TMRT has led to a notable enhancement of the accuracy of the primary reflector and a substantial improvement in efficiency in the Q-band.Through a process of iterative measurements and adjustments,the surface shape error is ultimately reduced to 0.28 mm root mean square(RMS).
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
文摘来自人造卫星的信号是射电天文观测面临的主要射频干扰(radio frequency interference,RFI)之一,这些RFI会将天文信号掩埋,为天文信号的搜寻和分析带来困扰。为了缓减卫星对天文观测的影响,我们在之前的工作中为500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)开发了卫星电磁干扰监测软件,主要包括卫星数据库、观测模块和监测模块。近年来随着多个巨型卫星星座的规划发射以及望远镜观测模式的增多,卫星对射电天文观测的影响更为复杂,已有的软件已经不能满足实际的需要。为此,本文在单个卫星干扰分析的基础上提出了卫星星座的干扰评估方法,并对已有监测软件进行了升级,升级后卫星数据库覆盖更多的在轨卫星及星座信息且能够自动化更新,观测模块能够支持更多种观测模式下的卫星过境预测和干扰评估。在实际天文观测中,通过接在FAST接收机上的频谱仪数据对软件的干扰预测结果进行了实验验证,结果证明升级后的软件能够在多种观测模式下预测可能威胁的卫星以及对应的过境时间,为望远镜观测规划的调整、卫星干扰的规避和接收系统的保护提供重要的支撑。
文摘The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main specifications,design,performance analysis,testing,and construction of the telescope antenna.The measured total efficiency is better than 50%over the whole elevation angle range,first sidelobe levels are less than−20 dB,antenna system noise temperatures are less than 70 K at 30°elevation angle,and pointing accuracy is less than 3″.The measured and calculated results are in good agreement,verifying the effectiveness of the design and analysis.
基金supported by the National SKA Program of China (Grant Nos. 2020SKA0120100 and 2020SKA0120200)the National Natural Science Foundation of China (Grant Nos. 12041304, 11873067, 11988101, 12041303, 11725313, 11725314, 11833003, 12003028, 12041306, 12103089, U2031209, U2038105, and U1831207)+8 种基金the National Key Research and Development Program of China (Grant Nos. 2019YFA0405100, 2017YFA0402602, 2018YFA0404204, and 2016YFA0400801)Key Research Program of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH021)Natural Science Foundation of Jiangsu Province (Grant No. BK20211000)Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CAS, the Strategic Priority Research Program on Space Science, the Western Light Youth Project of Chinese Academy of Sciences (Grant Nos. XDA15360000, XDA15052700, and XDB23040400)funding from the MaxPlanck Partner Group, the science research grants from the China Manned Space Project (Grant Nos. CMS-CSST2021-B11 and CMS-CSST-2021-A11)PKU development (Grant No. 7101502590)support from the XPLORER PRIZEsupported by Fundamental Research Funds for the Central Universities (Grant No. 14380046)the Program for Innovative Talents, Entrepreneur in Jiangsu。
文摘Fast radio bursts(FRBs) are highly dispersed millisecond-duration radio bursts,[1,2]of which the physical origin is still not fully understood. FRB 20201124A is one of the most actively repeating FRBs. In this paper, we present the collection of 1863 burst dynamic spectra of FRB 20201124A measured with the Five-hundred-meter Aperture Spherical radio Telescope(FAST). The current collection, taken from the observation during the FRB active phase from April to June 2021, is the largest burst sample detected for any FRB so far. The standard PSRFITs format is adopted, including dynamic spectra of the burst, and the time information of the dynamic spectra, in addition, mask files help readers to identify the pulse positions are also provided. The dataset is available in Science Data Bank, with the link https://www.doi.org/10.57760/sciencedb.j00113.00076.
文摘为确定500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)与其周边公众移动通信(Public Mobile Telecommunications,PMT)系统的电磁兼容(electromagnetic compatibility,EMC)特性,本文综合论述了FAST宁静区内中国移动、中国联通和中国电信三大运营商所属PMT基站对其产生的电磁干扰。首先,从射电天文业务的频谱划分谈起,论述了射电天文业务干扰源类型,引出了其运行保护标准,进而针对FAST详细说明了FAST宁静区的用频法规和保护要求;其次,分析了ITU-R建议电波传播预测与干扰分析方法,并通过实地测量验证了该方法的适用性,进一步针对性地分析了PMT基站的电磁辐射传播特性,综合评估了FAST宁静区内PMT基站的干扰情况:FAST宁静区域90.24%的PMT基站在一定程度上均会对FAST产生干扰,而在所选分析条件下,仅有43.14%的数据符合FAST保护要求;最后,针对PMT基站干扰信号的抑制和消除,分析了常用的射电天文射频干扰抑制方法,同时为保障FAST免受PMT基站干扰,从FAST和PMT基站的角度出发论述了可行的用频防护措施,并基于实施难度、经济成本、策略收益和通信质量4类指标建立了防护方法的评估体系,对所提防护方法进行了实例说明。上述研究成果可为保障FAST的安全观测提供技术基础。
基金supported by the National Key R&D Program of China(2022YFA1602904)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(YSBR-063)the National Natural Science Foundation of China(12225303 and 12041301).
文摘The Five-hundred-meter Aperture Spherical Radio Telescope(FAST)Core Array is a proposed extension of FAST,integrating 24 secondary 40-m antennas implanted within 5 km of the FAST site.This original array design will combine the unprecedented sensitivity of FAST with a high angular resolution(4.3"at a frequency of 1.4 GHz),thereby exceeding the capabilities at similar frequencies of next-generation arrays such as the Square Kilometre Array Phase 1 or the next-generation Very Large Array.This article presents the technical specifications of the FAST Core Array,evaluates its potential relatively to existing radio telescope arrays,and describes its expected scientific prospects.The proposed array will be equipped with technologically advanced backend devices,such as real-time signal processing systems.A phased array feed receiver will be mounted on FAST to improve the survey efficiency of the FAST Core Array,whose broad frequency coverage and large field of view(FOV)will be essential to study transient cosmic phenomena such as fast radio bursts and gravitational wave events,to conduct surveys and resolve structures in neutral hydrogen galaxies,to monitor or detect pulsars,and to investigate exoplanetary systems.Finally,the FAST Core Array can strengthen China's major role in the global radio astronomy community,owing to a wide range of potential scientific applications from cosmology to exoplanet science.
基金supported by National Natural Science Foundation of China(12273098).
文摘The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X bands,were completed between 2008 and 2012.From 2013 to 2017,four high-frequency receiving systems,including Ku,K,Ka,and Q bands,were constructed and their performance was comprehensively tested.There are three main innovations.(1)A fully movable large radio telescope system with advanced performance and complete functions has been built.(2)An advanced,reliable main reflector adjustment system has been completed,overcoming gravity deformation and creating a large antenna with a main reflective surface accuracy of 0.28 mm(root mean square)for any elevation.(3)Five innovative technologies have been developed to achieve high-precision pointing in any direction within 3″.The TMRT has made a crucial contribution to the orbital measurement and positioning of China’s lunar and deep space probes.Significantly enhancing China's ability to participate in international VLBI observations and radio astronomy,this has facilitated a series of achievements in observational radio astronomical research,in areas such as VLBI,spectral lines,and pulsars.
基金supported by the National Key Basic Research and Development Program of China(2021YFC22035-01)the National Natural Science Foundation of China(U1931137).
文摘This paper presents an innovative surrogate modeling method using a graph neural network to compensate for gravitational and thermal deformation in large radio telescopes.Traditionally,rapid compensation is feasible for gravitational deformation but not for temperature-induced deformation.The introduction of this method facilitates real-time calculation of deformation caused both by gravity and temperature.Constructing the surrogate model involves two key steps.First,the gravitational and thermal loads are encoded,which facilitates more efficient learning for the neural network.This is followed by employing a graph neural network as an end-to-end model.This model effectively maps external loads to deformation while preserving the spatial correlations between nodes.Simulation results affirm that the proposed method can successfully estimate the surface deformation of the main reflector in real-time and can deliver results that are practically indistinguishable from those obtained using finite element analysis.We also compare the proposed surrogate model method with the out-of-focus holography method and yield similar results.
文摘The science of radio astronomy focuses on the observation and study of celestial objects by reading their radio waves. The 5 meter radio-telescope is able to observe different radio sources using a C-band LNB. This research was essentially focused on Crab Nebula, also known as Taurus A. The study led to interesting observations, which were validated numerically using various scientific computing software. The radio waves emitted by Taurus A are readable by the RTL-SDR, a software defined radio receiver. This device is capable of reading radio frequencies in the range of 0.5 MHZ to 1700 MHZ.
基金supported by operating grants from the National Science and Engineering Research Council of Canada(NSERC)
文摘By appealing to a quark nova(QN;the explosive transition of a neutron star to a quark star) in the wake of a core-collapse supernova(CCSN) explosion of a massive star,we develop a unified model for long duration gamma-ray bursts(LGRBs) and fast radio bursts(FRBs).The time delay(years to decades)between the SN and the QN,and the fragmented nature(i.e.,millions of chunks) of the relativistic QN ejecta are key to yielding a robust LGRB engine.In our model,an LGRB light curve exhibits the interaction of the fragmented QN ejecta with turbulent(i.e.,filamentary and magnetically saturated) SN ejecta which is shaped by its interaction with an underlying pulsar wind nebula(PWN).The afterglow is due to the interaction of the QN chunks,exiting the SN ejecta,with the surrounding medium.Our model can fit BAT/XRT prompt and afterglow light curves simultaneously with their spectra,thus yielding the observed properties of LGRBs(e.g.,the Band function and the X-ray flares).We find that the peak luminositypeak photon energy relationship(i.e.,the Yonetoku law),and the isotropic energy-peak photon energy relationship(i.e.,the Amati law) are not fundamental but phenomenological.FRB-like emission in our model results from coherent synchrotron emission(CSE) when the QN chunks interact with non-turbulent weakly magnetized PWN-SN ejecta,where conditions are prone to the Weibel instability.Magnetic field amplification induced by the Weibel instability in the shocked chunk frame sets the bunching length for electrons and pairs to radiate coherently.The resulting emission frequency,luminosity and duration in our model are consistent with FRB data.We find a natural unification of high-energy burst phenomena from FRBs(i.e.,those connected to CCSNe) to LGRBs including X-ray flashes(XRFs) and X-ray rich GRBs(XRR-GRBs) as well as superluminous SNe(SLSNe).We find a possible connection between ultra-high energy cosmic rays and FRBs and propose that a QN following a binary neutron star merger can yield a short duration GRB(SGRB) with fits to BAT/XRT light curves.
基金support from the National Key R&D Program of China (2018YFE0202900)support by the NAOC Nebula Talents Program+2 种基金the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CASthe support from the Youth Innovation Promotion Association of CASsupported by the National Natural Science Foundation of China (Grant Nos.11703040,W820301904,11988101,11933011 and 11833009)。
文摘H Ⅱ regions made of gas ionized by radiations from young massive stars,are widely distributed in the Milky Way.They are tracers for star formation,and their distributions are correlated with the Galactic spiral structure.Radio recombination lines(RRLs) of hydrogen and other atoms allow for the most precise determination of physical parameters such as temperature and density.However,RRLs at around 1.4 GHz from HⅡ regions are weak and their detections are difficult.As a result,only a limited number of detections have been obtained yet.The 19-beam receiver on board of the Five-hundred-meter Aperture Spherical radio Telescope(FAST) can simultaneously cover 23 RRLs for Hnα,Henα,and Cnα(n=164-186),respectively.This,combined with its unparalleled collecting area,makes FAST the most powerful telescope to detect weak RRLs.In this pilot survey,we use FAST to observe nine HⅡ regions at L band.We allocate20 minutes pointing time for each source to achieve a sensitivity of around 9 mK in a velocity resolution of2.0 km s^(-1).In total,21 RRLs for Hnα and Cnα at 1.0-1.5 GHz have been simultaneously detected with strong emission signals.Overall,the detection rates for the H167α and C167α RRLs are 100%,while that for the He167α RRL is 33.3%.Using hydrogen and helium RRLs,we measure the electron density,electron temperature,and pressure for three HⅡ regions.This pilot survey demonstrates the capability of FAST in RRL measurements,and a statistically meaningful sample with RRL detection,through which knowledge about Galactic spiral structure and evolution can be obtained,is expected in the future.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11873080,12041304,U1838109 and 12041301)the CAS Jianzhihua project+3 种基金supported by the Key Laboratory of Xinjiang Uygur Autonomous Region No.2020D04049the National SKA Program of China No.2020SKA0120200the 2018 Project of Xinjiang Uygur Autonomous Region of China for Flexibly Fetching Upscale Talentspartly supported by the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)。
文摘Fast radio bursts(FRBs)are radio transients that are bright and have short duration,with their physical mechanism not being fully understood.We conducted a targeted search for bursts from FRB 20201124A between 2021 June 2and July 20.High time-resolution data were collected for 104.5 hr using the ROACH2-based digital backend.We introduce the details of our FRB search pipeline which is based on HEIMDALL and FETCH.Testing of the injected mock FRBs search could help us better understand the performance of the pipelines,and improve the search algorithms and classifiers.To study the efficiency of our pipeline,5000 mock FRBs were injected into the data and searched using the pipeline.The results of the mock FRB search show that our pipeline can recover almost all(?90%)the injected mock FRBs above a signal-to-noise ratio(S/N)threshold of 15,and the performance is still acceptable(?80%)for injected S/Ns from 10 to 15.The recovery fraction displays relations with S/N,dispersion measure and pulse width.No bursts were detected from FRB 20201124A in the middle of 2021.The non-detection of FRB 20201124A may be due to its quiet phase window or no emission above the threshold of the Nanshan telescope.
基金the National Natural Science Foundation of China(NSFC,No.11773008)supported by the National Program on Key Research and Development Project(Grant No.2016YFA0400803)+1 种基金the NSFC(11622326 and U1838103).supported by NSFC(11573008)the 2018 Project of Xinjiang Uygur Autonomous Region of China for Flexibly Fetching in Upscale Talents。
文摘Recently,a 16-day periodicity in a fast radio burst was reported.We propose that this 16-day periodicity may be due to forced precession of the neutron star by a fallback disk.When the rotation axis is misaligned with respect to the normal direction of the disk plane,the neutron star will precess.The eccentricity of the neutron star may be due to rotation or strong magnetic field,or similar reasons.We found that the 16-day period may be understood using typical masses of the fallback disk.Polarization observations and information about the neutron star rotation period may help to discriminate different models.The possible precession observations in pulsars,magnetars and fast radio bursts may be understood together considering forced precession by a fallback disk.
基金supported by the Ministry of Science and Technology(MOST)2018YFE0120800the National Key R&D Program 2017YFA0402603+2 种基金the National Natural Science Foundation of China(NSFC)grants 11633004 and 11473044the Chinese Academy of Sciences(CAS)grant QYZDJ-SSW-SLH017the Hebei Key Laboratory of Radio Astronomy Technology(HKLRAT)。
文摘The Tianlai Dish Pathfinder Array is a radio interferometer array consisting of 16 six-meter dish antennas.The original digital backend integration time is at the seconds level,designed for H I intensity mapping experiment.A new digital backend with millisecond response is added to enable it to search for fast radio burst during its observations.The design and calibration of this backend,and the real time search pipeline for it are described in this paper.It is capable of forming 16 digital beams for each linear polarization,covering an area of 19.6 square degrees.The search pipeline is capable of searching for,recording and classifying FRBs automatically in real time.In commissioning,we succeeded in capturing the signal pulses from the pulsars PSR B0329+54 and B2021+51.
基金supported by the National Natural Science Foundation of China (Grant Nos.11988101,U1938117,U1731238,11703003 and 11725313)the International Partnership Program of Chinese Academy of Sciences (Grant No.114A11KYSB20160008)+1 种基金the National Key R&D Program of China (No.2016YFA0400702)the Guizhou Provincial Science and Technology Foundation (Grant No.[2020]1Y019)。
文摘Fast radio bursts(FRBs) are extremely strong radio flares lasting several milliseconds,most of which come from unidentified objects at a cosmological distance.They can be apparently repeating or not.In this paper,we analyzed 18 repeaters and 12 non-repeating FRBs observed in the frequency bands of 400–800 MHz from Canadian Hydrogen Intensity Mapping Experiment(CHIME).We investigated the distributions of FRB isotropic-equivalent radio luminosity,considering the K correction.Statistically,the luminosity distribution can be better fitted by Gaussian form than by power-law.Based on the above results,together with the observed FRB event rate,pulse duration,and radio luminosity,FRB origin models are evaluated and constrained such that the gamma-ray bursts(GRBs) may be excluded for the non-repeaters while magnetars or neutron stars(NSs) emitting the supergiant pulses are preferred for the repeaters.We also found the necessity of a small FRB emission beaming solid angle(about 0.1 sr) from magnetars that should be considered,and/or the FRB association with soft gamma-ray repeaters(SGRs) may lie at a low probability of about 10%.Finally,we discussed the uncertainty of FRB luminosity caused by the estimation of the distance that is inferred by the simple relation between the redshift and dispersion measure(DM).