The existence of two diffe1:ent discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to ...The existence of two diffe1:ent discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to as a mode, the discharge current density is relatively low and the bulk plasma electrons acquire the energy due to the sheath expansion. In the second mode, termed γ mode, the discharge current density is relatively high, the secondary electrons emitted by cathodc under ion bombardment in the cathode sheath region play an important role in sustaining the discharge. In this paper, a one-dimensional self-consistent fluid model for rf APGDs is used to simulate the discharge mechanisms in the mode in helium discharge between two parallel metallic planar electrodes. The results show that as the applied voltage increases, the discharge current becomes greater and the plasma density correspondingly increases, consequentially the discharge transits from the a mode into the γ mode. The high collisionality of the APGD plasma results in significant drop of discharge potential across the sheath region, and the electron Joule heating and the electron collisional energy loss reach their maxima in the region. The validity of the simulation is checked with the available experimental and numerical data.展开更多
The gas heating mechanism in the pulse-modulated radio-frequency (rf) discharge at atmospheric pressure was inves- tigated with a one-dimensional two-temperature fluid model. Firstly, the spatiotemporal profiles of ...The gas heating mechanism in the pulse-modulated radio-frequency (rf) discharge at atmospheric pressure was inves- tigated with a one-dimensional two-temperature fluid model. Firstly, the spatiotemporal profiles of the gas temperature (Tg) in both consistent rf discharge and pulse-modulated rf discharge were compared. The results indicated that Tg decreases considerably with the pulse-modulated power, and the elastic collision mechanism plays a more important role in the gas heating change. Secondly, the influences of the duty cycle on the discharge parameters, especially on the Tg, were studied. It was found that Tg decreases almost linearly with the reduction of the duty cycle, and there exists one ideal value of the duty cycle, by which both the Tg can be adjusted and the glow mode can be sustained. Thirdly, the discharge mode changing from αto γ mode in the pulse-modulated rf discharge was investigated, the spatial distributions of Tg in the two modes show different features and the ion Joule heating is more important during the mode transition.展开更多
A one-dimensional self-consistent fluid numerical model was developed to study the ignition characteristics of a pulsc-tmxlulated(PM)radio-frequency(RF)glow discharge in atmospheric helium assisted by a sub-microsecon...A one-dimensional self-consistent fluid numerical model was developed to study the ignition characteristics of a pulsc-tmxlulated(PM)radio-frequency(RF)glow discharge in atmospheric helium assisted by a sub-microsecond voltage excited pulsed discharge.The temporal evolution of discharge current density and electron density during PM RF discharge burst was investigated to demonstrate the discharge ignition characteristics with or without the pulsed discharge.Under the assistance of pulsed discharge,the electron density in RF discharge burst reaches the magnitude of 1.87 x 1017-3m within 10 RF cycles,accompanied by the formation of sheath structure.It proposes that the pulsed discharge plays an important role in the ignition of PM RF discharge burst.Furthermore,the dynamics of PM RF glow discharge arc demonstrated by the spatiotcmporal evolution of the election density with and without pulsed discharge.The spatial profiles of electron density,electron energy and electric field at specific time instants arc given to explain the assistive role of the pulsed discharge on PM RF discharge ignition.展开更多
The role of pulse parameters on nanoparticle property is investigated self-consistently based on a couple of fluid model and aerosol dynamics model in a capacitively coupled parallel-plate acetylene(C2H2) discharge....The role of pulse parameters on nanoparticle property is investigated self-consistently based on a couple of fluid model and aerosol dynamics model in a capacitively coupled parallel-plate acetylene(C2H2) discharge. In this model, the mass continuity equation, momentum balance equation, and energy balance equation for neutral gas are taken into account.Thus, the thermophoretic force arises when a gas temperature gradient exists. The typical results of this model are positive and negative ion densities, electron impact collisions rates, nanoparticle density, and charge distributions. The simulation is performed for duty ratio 0.4/0.7/1.0, as well as pulse modulation frequency from 40 kHz to 2.7 MHz for pure C2H2 discharges at a pressure of 500 mTorr. We find that the pulse parameters, especially the duty ratio, have a great affect on the dissociative attachment coefficient and the negative density. More importantly, by decreasing the duty ratio, nanoparticles start to diffuse to the wall. Under the action of gas flow, nanoparticle density peak is created in front of the pulse electrode,where the gas temperature is smaller.展开更多
The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investiga...The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investigated using an established movable Langmuir probe. The results indicate that in the axial direction the electron density tends to peak at midway between the two electrodes while the axial variation trend of mean electron energy is different from that of the electron density, the mean electron energy is high near the electrodes. And the mean electron energy near the cathode is much higher than that near the anode. This article focuses on the radial distribution of electron density and mean electron energy. A proposed theoretical model distribution agrees well with the experimental one: the electron density and the mean electron energy both increase from the centre of the glow to the edge of electrodes. This is useful for better understanding the discharge mechanism and searching for a better deposition condition to improve thin film quality.展开更多
A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations...A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations of dust particles are coupled.The electrical interaction between charged dust particles is considered in the model.The time evolution of radial distributions of dust density,plasma density,the radial component of electric field and the forces acting on dust particles when dust density tends to be stable,are obtained and analyzed under different discharge currents and dust particle radii.It is shown that the dust density structure is determined mainly by the radial electrostatic force,thermophoretic force and ion drag force in the discharge tube,and both discharge current and dust particle radius have an obvious effect on the transport processes of dust particles.The dust particles gather in the central region of the discharge tube for low discharge current and small dust radius,then dust voids are formed and become wider when the discharge current and dust radius increase.The plasma parameters in the dust gathering region are obviously affected by the dust particles due to the charging processes of electrons and ions to the dust surface.展开更多
In this paper, a one-dimensional plasma fluid model is employed to study the self- sustained oscillations in DC-driven helium glow discharges at atmospheric pressure under different gas gaps. Our simulation results in...In this paper, a one-dimensional plasma fluid model is employed to study the self- sustained oscillations in DC-driven helium glow discharges at atmospheric pressure under different gas gaps. Our simulation results indicate that a harmonic current oscillation with tiny amplitude always occur at the onset of instability and transits into a relaxation one as the conductivity of the semiconductor is decreased. It is found that the dynamics of the oscillations are dependent on the gas gaps. The discharge can only exhibit a simple oscillation with unique amplitude and frequency at smaller gas gaps (〈2 mm) while it can exhibit a more complex oscillation with several different amplitudes and frequencies at larger gas gaps (〉2 mm). The discharge modes in these current oscillations have also been analyzed.展开更多
A comparative study of radio-frequency atmospheric pressure glow discharge(rf APGD)generated in helium with and without dielectric electrodes to investigate the effect of electrodes insulation on electrical features o...A comparative study of radio-frequency atmospheric pressure glow discharge(rf APGD)generated in helium with and without dielectric electrodes to investigate the effect of electrodes insulation on electrical features of APGD is presented. In the α mode, both the rf APGDs remain volumetric, stable and uniform. In the γ mode, the APGD without dielectric electrodes shrinks into a constricted plasma column whereas APGD with dielectric electrodes remains stable and retains the same volume without plasma constriction even at higher densities of discharge current. A comparison of electrical features of both rf APGDs in normal and abnormal glow discharge regimes is presented. In both APGDs with and without dielectric electrodes,impedance measurements have been performed and compared with equivalent circuit models.The measured impedance data is found to be in good agreement with simulated data.展开更多
Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investigated under different pH, voltages and initial concentrations. And the mechanism of the oxidation was explored. The results suggested that...Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investigated under different pH, voltages and initial concentrations. And the mechanism of the oxidation was explored. The results suggested that the degradation followed the first order kinetic law; Fe2+ had a remarkable catalytic effect on the removal rate of o-chloropenol. In the presence of Fe2+, 2-CP underwent an exhaustive degradation, from which the major intermediates included o-dihydroxybenze, p-hydroxybenze, p-benzoquione and carboxlic acids.展开更多
The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequenc...The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(s)- gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge.展开更多
In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including contin...In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%-0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field, electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-to- argon ratio is relatively larger (R = 0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.展开更多
A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown ...A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64:t=4 cm-lTorr-1, which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap.展开更多
This paper presents the fabrication and a spectroscopic study of a stable radio- frequency dielectric barrier discharge (RF DBD) in Ar with a novel dielectric, anodic alumina, at atmospheric pressure. Dielectric ele...This paper presents the fabrication and a spectroscopic study of a stable radio- frequency dielectric barrier discharge (RF DBD) in Ar with a novel dielectric, anodic alumina, at atmospheric pressure. Dielectric electrodes are fabricated from commercially available low cost impure aluminum strips by a two-step anodization process in 0.3 M solution of oxalic acid. The discharge is found to be stable with excellent spatial uniformity for the RF input power range of 30~80 W. Excitation and rotational temperatures measured in the experiment range of 1472~3255 K and 434~484 K, respectively, as the input power changes from 30 W to 80 W. These temperature ranges are suitable for surface modification applications.展开更多
To discuss the modes of dielectric barrier discharge(DBD) between needle-to-plane electrodes in air,DBD is generated and observed on a needle-to-plane device at atmospheric pressure air.Fast images of the DBD are take...To discuss the modes of dielectric barrier discharge(DBD) between needle-to-plane electrodes in air,DBD is generated and observed on a needle-to-plane device at atmospheric pressure air.Fast images of the DBD are taken by using a charge couple device(CCD) cinema with a macro lens,while the electrical and photo-electricity waveforms of the DBD are recorded.The current waveforms show that under an applied voltage of 3 kV,there are numerous short current pulses in both positive and negative half-periods of discharges.However,under 6 kV,there are still the numerous short current pulses in the positive half-periods,but only one wide current pulse in each negative half-period.This difference is also found in the photoelectric signals.The streamer,corona and glow discharges are observed from the images of the discharges at different applied voltages.The structure of glow discharge in the negative period is exactly the same as that of the low pressure glow discharge.However,in the positive period of discharge there is always a streamer.In the negative period of discharge,while the applied voltage increases,the transition from corona to glow discharge is observed.The progress of a transition between streamer and glow discharge at 6 kV during one period is analyzed.The glow discharge appearance is determined by two factors: the discharge current is limited to a certain extent by the dielectric layer; the charges deposited on the dielectric layer during the last half period enhance the intensity of the electric field.At an insufficient applied voltage,the cathode drop leads to no glow discharge,but Trichel pulses.展开更多
A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on e...A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.展开更多
A pseudoglow discharge behaviour is achieved at a 2.0-mm dielectric-dielectric electrode gap in pure helium under atmospheric pressure. An experimental study of the pseudoglow discharges is presented. The electrical c...A pseudoglow discharge behaviour is achieved at a 2.0-mm dielectric-dielectric electrode gap in pure helium under atmospheric pressure. An experimental study of the pseudoglow discharges is presented. The electrical characteristics and the discharge photos of the pseudoglow discharges are analyzed and discussed. The current-voltage parameters of the pseudoglow dis- charges are considered in regard to the influence on their behaviour.展开更多
A self-consistent fluid model for dual radio frequency argon capacitive glow discharges at low pressure is established. Numerical results are obtained by using a finite difference method to solve the model numerically...A self-consistent fluid model for dual radio frequency argon capacitive glow discharges at low pressure is established. Numerical results are obtained by using a finite difference method to solve the model numerically, and the results are analyzed to study the effect of gas pressure on the plasma characteristics. It shows that when the gas pressure increases from 0.3 Torr (1 Torr=1.33322102 Pa) to 1.5 Torr, the cycle-averaged plasma density and the ionization rate increase; the cycle-averaged ion current densities and ion energy densities on the electrodes electrode increase; the cycle-averaged electron temperature decreases. Also, the instantaneous electron density in the powered sheath region is presented and discussed. The cycle-averaged electric field has a complex behavior with the increasing of gas pressure, and its changes take place mainly in the two sheath regions. The cycle-averaged electron pressure heating, electron ohmic heating, electron heating, and electron energy loss are all influenced by the gas pressure. Two peaks of the electron heating appear in the sheath regions and the two peaks become larger and move to electrodes as the gas pressure increases.展开更多
In this paper, aerodynamic actuation characteristics of radio-frequency(RF) discharge plasma are studied and a method is proposed for shock wave control based on RF discharge. Under the static condition, a RF diffuse ...In this paper, aerodynamic actuation characteristics of radio-frequency(RF) discharge plasma are studied and a method is proposed for shock wave control based on RF discharge. Under the static condition, a RF diffuse glow discharge can be observed; under the supersonic inflow, the plasma is blown downstream but remains continuous and stable.Time-resolved schlieren is used for flow field visualization. It is found that RF discharge not only leads to continuous energy deposition on the electrode surface but also induces a compression wave. Under the supersonic inflow condition, a weak oblique shock wave is induced by discharge. Experimental results of the shock wave control indicate that the applied actuation can disperse the bottom structure of the ramp-induced oblique shock wave, which is also observed in the extracted shock wave structure after image processing. More importantly, this control effect can be maintained steadily due to the continuous high-frequency(MHz) discharge. Finally, correlations for schlieren images and numerical simulations are employed to further explore the flow control mechanism. It is observed that the vortex in the boundary layer increases after the application of actuation, meaning that the boundary layer in the downstream of the actuation position is thickened. This is equivalent to covering a layer of low-density smooth wall around the compression corner and on the ramp surface, thereby weakening the compressibility at the compression corner. Our results demonstrate the ability of RF plasma aerodynamic actuation to control the supersonic airflow.展开更多
Using a one-dimensional fluid model, the pulse-modulated radio-frequency dielectric barrier discharge in atmospheric helium is described. The influences of the pulse duty cycle on the discharge characteristics are stu...Using a one-dimensional fluid model, the pulse-modulated radio-frequency dielectric barrier discharge in atmospheric helium is described. The influences of the pulse duty cycle on the discharge characteristics are studied. The numerical results show that the dependence of discharge characteristics on the duty cycle is sensitive in the region of around 40% duty cycle under the given simulation parameters. In the case of a larger duty cycle, the plasma density is higher, the discharge becomes more intense, but the power consumption is higher. When the duty cycle is lower, one can get a weaker discharge, lower plasma density and higher electron temperature in the bulk plasma. In practical applications, in order to get a higher plasma density and a lower power consumption, it is more important to choose a suitable duty cycle to modulate the RF power supply.展开更多
A cross-interaction phenomenon between two dc glow discharges has been observed.We have studied the feature and variation regularty of the cross-interaction. A part of results arepresented in this paper.
基金Project supported by the National Natural Science Foundation of China(Grant Nos 50528707 and 50537020).
文摘The existence of two diffe1:ent discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to as a mode, the discharge current density is relatively low and the bulk plasma electrons acquire the energy due to the sheath expansion. In the second mode, termed γ mode, the discharge current density is relatively high, the secondary electrons emitted by cathodc under ion bombardment in the cathode sheath region play an important role in sustaining the discharge. In this paper, a one-dimensional self-consistent fluid model for rf APGDs is used to simulate the discharge mechanisms in the mode in helium discharge between two parallel metallic planar electrodes. The results show that as the applied voltage increases, the discharge current becomes greater and the plasma density correspondingly increases, consequentially the discharge transits from the a mode into the γ mode. The high collisionality of the APGD plasma results in significant drop of discharge potential across the sheath region, and the electron Joule heating and the electron collisional energy loss reach their maxima in the region. The validity of the simulation is checked with the available experimental and numerical data.
基金Project supported by the National Natural Science Foundation of China(Granted Nos.11405022 and 11475040)Dalian High Level Talent Innovation Support Plan,China(Grant No.2015R050)
文摘The gas heating mechanism in the pulse-modulated radio-frequency (rf) discharge at atmospheric pressure was inves- tigated with a one-dimensional two-temperature fluid model. Firstly, the spatiotemporal profiles of the gas temperature (Tg) in both consistent rf discharge and pulse-modulated rf discharge were compared. The results indicated that Tg decreases considerably with the pulse-modulated power, and the elastic collision mechanism plays a more important role in the gas heating change. Secondly, the influences of the duty cycle on the discharge parameters, especially on the Tg, were studied. It was found that Tg decreases almost linearly with the reduction of the duty cycle, and there exists one ideal value of the duty cycle, by which both the Tg can be adjusted and the glow mode can be sustained. Thirdly, the discharge mode changing from αto γ mode in the pulse-modulated rf discharge was investigated, the spatial distributions of Tg in the two modes show different features and the ion Joule heating is more important during the mode transition.
文摘A one-dimensional self-consistent fluid numerical model was developed to study the ignition characteristics of a pulsc-tmxlulated(PM)radio-frequency(RF)glow discharge in atmospheric helium assisted by a sub-microsecond voltage excited pulsed discharge.The temporal evolution of discharge current density and electron density during PM RF discharge burst was investigated to demonstrate the discharge ignition characteristics with or without the pulsed discharge.Under the assistance of pulsed discharge,the electron density in RF discharge burst reaches the magnitude of 1.87 x 1017-3m within 10 RF cycles,accompanied by the formation of sheath structure.It proposes that the pulsed discharge plays an important role in the ignition of PM RF discharge burst.Furthermore,the dynamics of PM RF glow discharge arc demonstrated by the spatiotcmporal evolution of the election density with and without pulsed discharge.The spatial profiles of electron density,electron energy and electric field at specific time instants arc given to explain the assistive role of the pulsed discharge on PM RF discharge ignition.
基金Project supported by the Natural Science Foundation of Heilongjiang Province,China(Grant Nos.A2015011 and A2015010)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province,China(Grant No.LBH-Q14159)+1 种基金the National Natural Science Foundation of China(Grant No.11404180)the Program for Young Teachers Scientific Research in Qiqihar University,China(Grant No.2014k-Z11)
文摘The role of pulse parameters on nanoparticle property is investigated self-consistently based on a couple of fluid model and aerosol dynamics model in a capacitively coupled parallel-plate acetylene(C2H2) discharge. In this model, the mass continuity equation, momentum balance equation, and energy balance equation for neutral gas are taken into account.Thus, the thermophoretic force arises when a gas temperature gradient exists. The typical results of this model are positive and negative ion densities, electron impact collisions rates, nanoparticle density, and charge distributions. The simulation is performed for duty ratio 0.4/0.7/1.0, as well as pulse modulation frequency from 40 kHz to 2.7 MHz for pure C2H2 discharges at a pressure of 500 mTorr. We find that the pulse parameters, especially the duty ratio, have a great affect on the dissociative attachment coefficient and the negative density. More importantly, by decreasing the duty ratio, nanoparticles start to diffuse to the wall. Under the action of gas flow, nanoparticle density peak is created in front of the pulse electrode,where the gas temperature is smaller.
文摘The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investigated using an established movable Langmuir probe. The results indicate that in the axial direction the electron density tends to peak at midway between the two electrodes while the axial variation trend of mean electron energy is different from that of the electron density, the mean electron energy is high near the electrodes. And the mean electron energy near the cathode is much higher than that near the anode. This article focuses on the radial distribution of electron density and mean electron energy. A proposed theoretical model distribution agrees well with the experimental one: the electron density and the mean electron energy both increase from the centre of the glow to the edge of electrodes. This is useful for better understanding the discharge mechanism and searching for a better deposition condition to improve thin film quality.
基金supported by the Stable-Support Scientific Project of China Research Institute of Radiowave Propagation(No.132101W07)National Natural Science Foundation of China(No.12105251)National Key Laboratory Foundation Electromagnetic Environment(Nos.A382101001,A382101002 and A152101731-C02).
文摘A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations of dust particles are coupled.The electrical interaction between charged dust particles is considered in the model.The time evolution of radial distributions of dust density,plasma density,the radial component of electric field and the forces acting on dust particles when dust density tends to be stable,are obtained and analyzed under different discharge currents and dust particle radii.It is shown that the dust density structure is determined mainly by the radial electrostatic force,thermophoretic force and ion drag force in the discharge tube,and both discharge current and dust particle radius have an obvious effect on the transport processes of dust particles.The dust particles gather in the central region of the discharge tube for low discharge current and small dust radius,then dust voids are formed and become wider when the discharge current and dust radius increase.The plasma parameters in the dust gathering region are obviously affected by the dust particles due to the charging processes of electrons and ions to the dust surface.
基金supported by National Natural Science Foundation of China(Nos.11205044 and 11405042)Hebei Natural Science Fund of China(Nos.A2012201015 and A2011201006)+2 种基金the Research Foundation of Education Bureau of Hebei Province of China(No.Y2012009)the Postdoctoral Science Foundation of Hebei Province of China(No.B2014003004)the Postdoctoral Foundation of Hebei University
文摘In this paper, a one-dimensional plasma fluid model is employed to study the self- sustained oscillations in DC-driven helium glow discharges at atmospheric pressure under different gas gaps. Our simulation results indicate that a harmonic current oscillation with tiny amplitude always occur at the onset of instability and transits into a relaxation one as the conductivity of the semiconductor is decreased. It is found that the dynamics of the oscillations are dependent on the gas gaps. The discharge can only exhibit a simple oscillation with unique amplitude and frequency at smaller gas gaps (〈2 mm) while it can exhibit a more complex oscillation with several different amplitudes and frequencies at larger gas gaps (〉2 mm). The discharge modes in these current oscillations have also been analyzed.
基金partially supported by the Higher Education Commission Project No. 1852
文摘A comparative study of radio-frequency atmospheric pressure glow discharge(rf APGD)generated in helium with and without dielectric electrodes to investigate the effect of electrodes insulation on electrical features of APGD is presented. In the α mode, both the rf APGDs remain volumetric, stable and uniform. In the γ mode, the APGD without dielectric electrodes shrinks into a constricted plasma column whereas APGD with dielectric electrodes remains stable and retains the same volume without plasma constriction even at higher densities of discharge current. A comparison of electrical features of both rf APGDs in normal and abnormal glow discharge regimes is presented. In both APGDs with and without dielectric electrodes,impedance measurements have been performed and compared with equivalent circuit models.The measured impedance data is found to be in good agreement with simulated data.
基金The project supported by the Key Project of Science and Technology from the Ministry of Education China (No. 00250) the project of KJCXGC-01 of Northwest Normal University, China
文摘Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investigated under different pH, voltages and initial concentrations. And the mechanism of the oxidation was explored. The results suggested that the degradation followed the first order kinetic law; Fe2+ had a remarkable catalytic effect on the removal rate of o-chloropenol. In the presence of Fe2+, 2-CP underwent an exhaustive degradation, from which the major intermediates included o-dihydroxybenze, p-hydroxybenze, p-benzoquione and carboxlic acids.
基金supported by National Natural Science Foundation of China(Nos.11475043 and 11375042)
文摘The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(s)- gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge.
基金supported by National Natural Science Foundation of China (No. 11505089)
文摘In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%-0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field, electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-to- argon ratio is relatively larger (R = 0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.
基金supported by National Natural Science Foundation of China (Nos. 10835004, 10905010)Shanghai Shuguang Program (No. 08SG31)the Fundamental Research Funds for the Central Universities of China
文摘A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64:t=4 cm-lTorr-1, which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap.
基金supported partially by the Higher Education Commission Project No.794 and Project No.1852 of Pakistan
文摘This paper presents the fabrication and a spectroscopic study of a stable radio- frequency dielectric barrier discharge (RF DBD) in Ar with a novel dielectric, anodic alumina, at atmospheric pressure. Dielectric electrodes are fabricated from commercially available low cost impure aluminum strips by a two-step anodization process in 0.3 M solution of oxalic acid. The discharge is found to be stable with excellent spatial uniformity for the RF input power range of 30~80 W. Excitation and rotational temperatures measured in the experiment range of 1472~3255 K and 434~484 K, respectively, as the input power changes from 30 W to 80 W. These temperature ranges are suitable for surface modification applications.
基金supported by National High-tech Research and Development Program of China(863 Program)(2012AA062609)National Twelfth-five Year Science and Technology Supporting Program of China(2013BAC06B02)+1 种基金Special Fund for Marine Scientific Research in the Public Interest(201305027-5)Fundamental Research Fund for the Central Universities(3132013316)
文摘To discuss the modes of dielectric barrier discharge(DBD) between needle-to-plane electrodes in air,DBD is generated and observed on a needle-to-plane device at atmospheric pressure air.Fast images of the DBD are taken by using a charge couple device(CCD) cinema with a macro lens,while the electrical and photo-electricity waveforms of the DBD are recorded.The current waveforms show that under an applied voltage of 3 kV,there are numerous short current pulses in both positive and negative half-periods of discharges.However,under 6 kV,there are still the numerous short current pulses in the positive half-periods,but only one wide current pulse in each negative half-period.This difference is also found in the photoelectric signals.The streamer,corona and glow discharges are observed from the images of the discharges at different applied voltages.The structure of glow discharge in the negative period is exactly the same as that of the low pressure glow discharge.However,in the positive period of discharge there is always a streamer.In the negative period of discharge,while the applied voltage increases,the transition from corona to glow discharge is observed.The progress of a transition between streamer and glow discharge at 6 kV during one period is analyzed.The glow discharge appearance is determined by two factors: the discharge current is limited to a certain extent by the dielectric layer; the charges deposited on the dielectric layer during the last half period enhance the intensity of the electric field.At an insufficient applied voltage,the cathode drop leads to no glow discharge,but Trichel pulses.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172101)
文摘A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.
文摘A pseudoglow discharge behaviour is achieved at a 2.0-mm dielectric-dielectric electrode gap in pure helium under atmospheric pressure. An experimental study of the pseudoglow discharges is presented. The electrical characteristics and the discharge photos of the pseudoglow discharges are analyzed and discussed. The current-voltage parameters of the pseudoglow dis- charges are considered in regard to the influence on their behaviour.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172101)
文摘A self-consistent fluid model for dual radio frequency argon capacitive glow discharges at low pressure is established. Numerical results are obtained by using a finite difference method to solve the model numerically, and the results are analyzed to study the effect of gas pressure on the plasma characteristics. It shows that when the gas pressure increases from 0.3 Torr (1 Torr=1.33322102 Pa) to 1.5 Torr, the cycle-averaged plasma density and the ionization rate increase; the cycle-averaged ion current densities and ion energy densities on the electrodes electrode increase; the cycle-averaged electron temperature decreases. Also, the instantaneous electron density in the powered sheath region is presented and discussed. The cycle-averaged electric field has a complex behavior with the increasing of gas pressure, and its changes take place mainly in the two sheath regions. The cycle-averaged electron pressure heating, electron ohmic heating, electron heating, and electron energy loss are all influenced by the gas pressure. Two peaks of the electron heating appear in the sheath regions and the two peaks become larger and move to electrodes as the gas pressure increases.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11472306,51407197,and 51507187)
文摘In this paper, aerodynamic actuation characteristics of radio-frequency(RF) discharge plasma are studied and a method is proposed for shock wave control based on RF discharge. Under the static condition, a RF diffuse glow discharge can be observed; under the supersonic inflow, the plasma is blown downstream but remains continuous and stable.Time-resolved schlieren is used for flow field visualization. It is found that RF discharge not only leads to continuous energy deposition on the electrode surface but also induces a compression wave. Under the supersonic inflow condition, a weak oblique shock wave is induced by discharge. Experimental results of the shock wave control indicate that the applied actuation can disperse the bottom structure of the ramp-induced oblique shock wave, which is also observed in the extracted shock wave structure after image processing. More importantly, this control effect can be maintained steadily due to the continuous high-frequency(MHz) discharge. Finally, correlations for schlieren images and numerical simulations are employed to further explore the flow control mechanism. It is observed that the vortex in the boundary layer increases after the application of actuation, meaning that the boundary layer in the downstream of the actuation position is thickened. This is equivalent to covering a layer of low-density smooth wall around the compression corner and on the ramp surface, thereby weakening the compressibility at the compression corner. Our results demonstrate the ability of RF plasma aerodynamic actuation to control the supersonic airflow.
基金supported jointly by National Natural Science Foundation of China (No. 10835004) and National Basic Research Program of China (No. 2010CB832901)
文摘Using a one-dimensional fluid model, the pulse-modulated radio-frequency dielectric barrier discharge in atmospheric helium is described. The influences of the pulse duty cycle on the discharge characteristics are studied. The numerical results show that the dependence of discharge characteristics on the duty cycle is sensitive in the region of around 40% duty cycle under the given simulation parameters. In the case of a larger duty cycle, the plasma density is higher, the discharge becomes more intense, but the power consumption is higher. When the duty cycle is lower, one can get a weaker discharge, lower plasma density and higher electron temperature in the bulk plasma. In practical applications, in order to get a higher plasma density and a lower power consumption, it is more important to choose a suitable duty cycle to modulate the RF power supply.
基金863(863-715-23-07) and Nuclear Foundation (H7196C0308).
文摘A cross-interaction phenomenon between two dc glow discharges has been observed.We have studied the feature and variation regularty of the cross-interaction. A part of results arepresented in this paper.