This study demonstrated that damage to the cerebral microvasculature, the formation of microthrombi and swelling of vascular endothelial cells occur early and peak 12 hours after injury in a rat model of diffuse axona...This study demonstrated that damage to the cerebral microvasculature, the formation of microthrombi and swelling of vascular endothelial cells occur early and peak 12 hours after injury in a rat model of diffuse axonal injury. Moreover, these pathological changes were most evident in the cerebral cortex. Cerebral microcirculatory dysfunction peaked later and had a shorter duration than axonal injury. In addition, the radioactive imaging agent, 99Tcm-4, 9-diaza-2, 3, 10, 10- tetramethyldodecan-2, 11 -dione dioxime, was used to visualize the dynamic changes that occur in tissue with cerebral hypoxia. The results demonstrated that cerebral hypoxia occurs at an early stage in diffuse axonal injury. Cerebral hypoxia was evident 12 hours after injury and declined slightly 24 hours after injury, but was significantly higher than in the control group. The pathological changes that underpin microcirculatory dysfunction did not occur at the same time as axonal injury, but did occur simultaneously with neuronal injury. Cerebral hypoxia plays a key role in promoting the secondary brain injury that occurs after diffuse axonal injury.展开更多
基金the National Natural Science Foundationof China, No. 30471774the Program for New Century Excellent Talents in University, Ministry of Education,China, No. NCET-05-0831
文摘This study demonstrated that damage to the cerebral microvasculature, the formation of microthrombi and swelling of vascular endothelial cells occur early and peak 12 hours after injury in a rat model of diffuse axonal injury. Moreover, these pathological changes were most evident in the cerebral cortex. Cerebral microcirculatory dysfunction peaked later and had a shorter duration than axonal injury. In addition, the radioactive imaging agent, 99Tcm-4, 9-diaza-2, 3, 10, 10- tetramethyldodecan-2, 11 -dione dioxime, was used to visualize the dynamic changes that occur in tissue with cerebral hypoxia. The results demonstrated that cerebral hypoxia occurs at an early stage in diffuse axonal injury. Cerebral hypoxia was evident 12 hours after injury and declined slightly 24 hours after injury, but was significantly higher than in the control group. The pathological changes that underpin microcirculatory dysfunction did not occur at the same time as axonal injury, but did occur simultaneously with neuronal injury. Cerebral hypoxia plays a key role in promoting the secondary brain injury that occurs after diffuse axonal injury.