Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL...Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL samples were utilized for training the support vector machine(SVM)-,random forest(RF)-,and back propagation neural network(BPNN)-based models,respectively.Simultaneously,the machine learning model was embedded into genetic algorithm(GA)for parameter optimization to effectively predict uniaxial compressive strength(UCS)of CRL.Results indicate that the BPNN model with five hidden layers presents the best training effect in the data set of CRL.The SVM-based model shows a tendency to overfitting in the training set and poor generalization ability in the testing set.The RF-based model is suitable for training CRL samples with large data.Analysis of Pearson correlation coefficient matrix and the percentage increment method of performance metrics shows that the dry density,pore structure,and porosity of CRL are strongly correlated to UCS.However,the P-wave velocity is almost uncorrelated to the UCS,which is significantly distinct from the law for homogenous geomaterials.In addition,the pore tensor proposed in this paper can effectively reflect the pore structure of coral framework limestone(CFL)and coral boulder limestone(CBL),realizing the quantitative characterization of the heterogeneity and anisotropy of pore.The pore tensor provides a feasible idea to establish the relationship between pore structure and mechanical behavior of CRL.展开更多
A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d...A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d<0.075 mm,0.075 mm≤d<0.1 mm,0.1 mm≤d<0.2 mm,0.2 mm≤d<0.5 mm and 0.5 mm≤d<1.0 mm)to study the structures and particle contacts of granite residual soil.The X-ray micro computed tomography method was used to reconstruct the microstructure of granite residual soil.The particle was identified and regularized using principal component analysis(PCA).The particle contacts and geometrical characteristics in 3D space were analyzed and summarized using statistical analyses.The results demonstrate that the main types of contact among the particles are face-face,face-angle,face-edge,edge-edge,edge-angle and angle-angle contacts for particle sizes less than 0.2 mm.When the particle sizes are greater than 0.2 mm,the contacts are effectively summarized as face-face,face-angle,face-edge,edge-edge,edge-angle,angle-angle,sphere-sphere,sphere-face,sphere-edge and sphere-angle contacts.The differences in porosity among the original sample,reconstructed sample and regularized sample are closely related to the water-swelling and water-disintegrable characteristics of granite residual soil.展开更多
Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle,...Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.展开更多
The bio-sandstone, which was cemented by microbe cement, was firstly prepared, and then the microstructure evolution process was studied by X-ray computed tomography (X-CT) technique. The experimental results indica...The bio-sandstone, which was cemented by microbe cement, was firstly prepared, and then the microstructure evolution process was studied by X-ray computed tomography (X-CT) technique. The experimental results indicate that the microstructure of bio-sandstone becomes dense with the development of age. The evolution of inner structure at different positions is different due to the different contents of microbial induced precipitation calcite. Besides, the increase rate of microbial induced precipitation calcite gradually decreases because of the reduction of microbe absorption content with the decreasing pore size in bio-sandstone.展开更多
The most significant problem of maize grain mechanical harvesting quality in China at present is the high grain breakage rate(BR).BR is often the key characteristic that is measured to select hybrids desirable for mec...The most significant problem of maize grain mechanical harvesting quality in China at present is the high grain breakage rate(BR).BR is often the key characteristic that is measured to select hybrids desirable for mechanical grain harvesting.However,conventional BR evaluation and measurement methods have challenges and limitations.Microstructural crack parameters evaluation of maize kernel is of great importance to BR.In this connection,X-ray computed microtomography(μ-CT)has proven to be a quite useful method for the assessment of microstructure,as it provides important microstructural parameters,such as object volume,surface,surface/volume ratio,number of closed pores,and others.X-ray computed microtomography is a non-destructive technique that enables the reuse of samples already measured and also yields bidimensional(2D)cross-sectional images of the sample as well as volume rendering.In this paper,six different maize hybrid genotypes are used as materials,and the BR of the maize kernels of each variety is tested in the field mechanical grain harvesting,and the BR is used as an index for evaluating the breakage resistance of the variety.The crack characteristic parameters of kernel were detected by X-ray micro-computed tomography,and the relationship between the BR and the kernel crack characteristics was analyzed by stepwise regression analysis.Establishing a relationship between crack characteristic parameters and BR of maize is vital for judging breakage resistance.The results of stepwise multiple linear regression(MLR)showed that the crack characteristics of the object surface,number of closed pores,surface of closed pores,and closed porosity percent were significantly correlated to the BR of field mechanical grain harvesting,with the standard partial regression coefficients of–0.998,–0.988,–0.999,and–0.998,respectively.The R2 of this model was 0.999.Results validation showed that the Stepwise MLR Model could well predict the BR of maize based on these four variables.展开更多
The three dimensional (3D) geometry of soil macropores largely controls preferential flow, which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability. However, detailed st...The three dimensional (3D) geometry of soil macropores largely controls preferential flow, which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability. However, detailed studies on the 3D geometry of macropore networks in forest soils are rare. The intense rainfall-triggered potentially unstable slopes were threatening the villages at the downstream of Touzhai valley (Yunnan, China). We visualized and quantified the 3D macropore networks in undisturbed soil columns (Histosols) taken from a forest hillslope in Touzhai valley, and compared them with those in agricultural soils (corn and soybean in USA; barley, fodder beet and red fescue in Denmark) and grassland soils in USA. We took two large undisturbed soil columns (250 mm^25o mmxsoo mm), and scanned the soil columns at in-situ soil water content conditions using X-ray computed tomography at a voxel resolution of 0.945 × 0.945 × 1.500o mm^3. After reconstruction and visualization, we quantified the characteristics of macropore networks. In the studied forest soils, the main types of maeropores were root channels, inter-aggregate voids, maeropores without knowing origin, root-soil interfaee and stone-soil interface. While maeropore networks tend to be more eomplex, larger, deeper and longer. The forest soils have high maeroporosity, total maeropore wall area density, node density, and large maeropore volume, hydraulie radius, mean maeropore length, angle, and low tortuosity. The findings suggest that maeropore networks in the forest soils have high inter- connectivity, vertical continuity, linearity and less vertically oriented.展开更多
Redox flow batteries offer a potential solution to an increase in renewable energy generation on the grid by offering long-term, large-scale storage and regulation of power. However, they are currently un- derutilised...Redox flow batteries offer a potential solution to an increase in renewable energy generation on the grid by offering long-term, large-scale storage and regulation of power. However, they are currently un- derutilised due to cost and performance issues, many of which are linked to the microstructure of the porous carbon electrodes used. Here, for the first time, we offer a detailed study of the in situ effects of compression on a commercially available carbon felt electrode. Visualisation of electrode structure us- ing X-ray computed tomography shows the non-linear way that these materials compress and various metrics are used to elucidate the changes in porosity, pore size distribution and tortuosity factor under compressions from 0%-90%.展开更多
Background: Computed radiography has a wider exposure latitude when compared with film-screen imaging system. Consequently, the risk of dose creep is high. A conscientious effort is there-fore, needed by the radiograp...Background: Computed radiography has a wider exposure latitude when compared with film-screen imaging system. Consequently, the risk of dose creep is high. A conscientious effort is there-fore, needed by the radiographer to keep exposure as low as reasonably achievable. Objective: To derive a computed radiography exposure chart for a negroid population using AGFA photostimulable phosphor plates and a GE static X-ray machine. Materials and Method: A static X-ray machine, a digitizer, and photostimulable phosphor plates were used for the X-ray examination. Chest examinations were done at a Focus-Film-Distance (FFD) of 150 - 180 cm while all other examinations were conducted at 90 - 100 cm FFD. The range of exposure factors (kVp, mA and mAs) used by radiog-raphers in the centre was noted and the 90th percentile calculated. Over a three-month period, the patients were examined with the 90th percentile of tube potential (kVp) while keeping other factors constant. The kVp was gradually decreased and halted if radiologists and radiographers uncon-nected with the work expressed misgivings about the quality of the image. A similar procedure was adopted for the tube current (mA). The threshold adopted as low as reasonably achievable was the factor preceding the point of observation by other personnel. Metrics for central tendency from the statistical packages for social sciences, version 17.0 was used to analyze the data. Results: 335 subjects of both gender aged 0 - 92 years were examined by the researchers. Adult exposure factors used by the radiographers (and those derived by the researchers) had a range of 45 - 130 kVp (62 - 94 kVp), 63 - 320 mA (100 - 250 mA) and 4.0 - 25.0 mAs (5.0 - 20.0 mAs) respectively. Pediatric chest (and researchers-derived) factors were 50 - 75 kVp (52 - 65 kVp), 50 - 250 mA (100 - 220 mA) and 3.20 - 10.0 mAs (3.2 - 6.5 mAs) respectively. Conclusion: Upper threshold of adult (and paediatric) exposure factors in computed radiography with comparable equipment and accessories should not exceed 94 kVp (65 kVp), 250 mA (220 mA) and 20.0 mAs (6.5 mAs) respectively. The derived exposure chart is also adequate to address motion unsharpness in chest examinations.展开更多
Conspecific seagrass living in differing environments may develop different root system acclimation patterns.We applied X-ray computed tomography(CT)for imaging and quantifying roots systems of Zostera japonica collec...Conspecific seagrass living in differing environments may develop different root system acclimation patterns.We applied X-ray computed tomography(CT)for imaging and quantifying roots systems of Zostera japonica collected from typical oligotrophic and eutrophic sediments in two coastal sites of northern China,and determined sediment physicochemical properties that might influence root system morphology,density,and distribution.The trophic status of sediments had little influence on the Z.japonica root length,and diameters of root and rhizome.However,Z.japonica in oligotrophic sediment developed the root system with longer rhizome node,deeper rhizome distribution,and larger allocation to below-ground tissues in order to acquire more nutrients and relieve the N deficiency.And the lower root and rhizome densities of Z.japonica in eutrophic sediment were mainly caused by fewer shoots and shorter longevity,which was resulted from the more serious sulfide inhibition.Our results systematically revealed the effect of sediment trophic status on the phenotypic plasticity,quantity,and distribution of Z.japonica root system,and demonstrated the feasibly of X-ray CT in seagrass root system research.展开更多
Conventional radiography with film (CRF) has been in use for diagnostic purposes for a long time now. It has proved to be a great assert for the radiographers in assessing various abnormalities. With recent advances i...Conventional radiography with film (CRF) has been in use for diagnostic purposes for a long time now. It has proved to be a great assert for the radiographers in assessing various abnormalities. With recent advances in technology it is now possible to have digital solutions for radiography problems at a very cost effective, environment friendly and also with better image quality in certain applications when compared to CRF. Rather than using a CRF a computed radiography (CR) uses imaging plates to capture the image. The imaging plate contains photosensitive phosphors which contain the latent image. Later this plate is introduced into a reader which is then converted into a digital image. The major advantage and the cost effective element of this system is the ability to reuse the imaging plates unlike the photographic film where in only a single image can be captured and cannot be reused. The computed radiography drastically reduces the cost by eliminating the use of chemicals like film developers and fixers and also the need for a storage room. It also helps to reduce the costs that are involved in the disposal of wastes due to conventional radiography. This paper investigates whether it is cost effective to use computed radiography over film based system at Al-Batnan Medical Center (BMC), Tobruk, Libya by using Cost Benefit Analysis (CBA). Apart from the initial cost of the CR System, based on the data collected from the center, from the year 2008 to 2012 (until June 2012) a total of 581,566 images were produced with the total cost incurred using film based system being USD 4,652,528. If the same number of images were produced using a CR system the total cost incurred would have been USD 82,600. Taking into consideration the cost of a new CR system to be USD 120,000 the overall cost of producing these images is USD 202,600. It is observed that an amount of USD 4,449,928 could have been saved over the period of 5 years starting from 2008 to 2012 by using the CR system at BMC. Using Cost Benefit Analysis, the average value of the net difference between the costs and benefits for the conventional film based system is ?83.38 where as for the Computed System it is 22.06. Based on the principles of Cost Benefit Analysis it can be concluded that the system with a net positive difference is more cost beneficial than the other. With the help of the above two analysis it can be concluded that the use of computed radiography is definitely more cost effective for use at BMC, when compared to the conventional x-ray radiography.展开更多
Objective: Maxillofacial injuries are one of the commonest injuries encountered. Roentgenographic evaluation of maxillofacial trauma is of prime importance for diagnosis and treatment of these injuries. Study Design: ...Objective: Maxillofacial injuries are one of the commonest injuries encountered. Roentgenographic evaluation of maxillofacial trauma is of prime importance for diagnosis and treatment of these injuries. Study Design: Forty patients were evaluated in the prospective four-year study. We studied and evaluated the demography and diagnostic efficacy of clinical, plain radiography, and computed scan in maxillofacial trauma. Result: Road traffic accidents were the commonest cause of maxillofacial injuries. Patients having multiple fractures, mandibular fractures were the commonest. Conclusion: Computed tomography proved a useful adjunct in midfacial trauma.展开更多
Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can b...Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can be used to identify each of these anomalies in the chest x-ray images. Convolutional neural networks (CNNs) have shown great success in the fields of image recognition and image classification since there are numerous large-scale annotated image datasets available. The classification of medical images, particularly radiographic images, remains one of the biggest hurdles in medical diagnosis because of the restricted availability of annotated medical images. However, such difficulty can be solved by utilizing several deep learning strategies, including data augmentation and transfer learning. The aim was to build a model that would detect abnormalities in chest x-ray images with the highest probability. To do that, different models were built with different features. While making a CNN model, one of the main tasks is to tune the model by changing the hyperparameters and layers so that the model gives out good training and testing results. In our case, three different models were built, and finally, the last one gave out the best-predicted results. From that last model, we got 98% training accuracy, 84% validation, and 81% testing accuracy. The reason behind the final model giving out the best evaluation scores is that it was a well-fitted model. There was no overfitting or underfitting issues. Our aim with this project was to make a tool using the CNN model in R language, which will help detect abnormalities in radiography images. The tool will be able to detect diseases such as Pneumonia, Covid-19, Effusions, Infiltration, Pneumothorax, and others. Because of its high accuracy, this research chose to use supervised multi-class classification techniques as well as Convolutional Neural Networks (CNNs) to classify different chest x-ray images. CNNs are extremely efficient and successful at reducing the number of parameters while maintaining the quality of the primary model. CNNs are also trained to recognize the edges of various objects in any batch of images. CNNs automatically discover the relevant aspects in labeled data and learn the distinguishing features for each class by themselves.展开更多
Damage assessments in three dimensional (3D) textile composites subjected to mechanical loading can be performed by non-destructive and destructive techniques.This paper applies the two techniques to investigate the f...Damage assessments in three dimensional (3D) textile composites subjected to mechanical loading can be performed by non-destructive and destructive techniques.This paper applies the two techniques to investigate the fracture behavior of 3D tufted textile composites.X-ray computed tomography as a non-destructive evaluation method is appropriate to detect damage locations and identify their progression in 3D textile composites.Destructive methods such as sectioning toward observing damage provide valuable information about damage patterns.The results of this research could be utilized to evaluate the initial cause of rupture in 3D tufted composites used in aerospace structures and analyze fracture modes and damage progression.展开更多
Soil cores from a field growing barley and barley mutants without root hairs under conventional and minimum tillage were sampled. They were X-ray scanned to produce a 3D image and then the roots were washed out and we...Soil cores from a field growing barley and barley mutants without root hairs under conventional and minimum tillage were sampled. They were X-ray scanned to produce a 3D image and then the roots were washed out and weight and length were determined by conventional means. Root volume and surface area were then calculated from the 3D images using state of the art software and methodology, and the measured and calculated measures were correlated. The only strong and significant correlation was between measured weight and calculated volume for mutants without root hairs. It is concluded that the software cannot segment out very small roots, but segmentation accuracy also depends on root structure in some unknown way. Any study using X-ray computed tomography to quantify roots as they grow in situ should start with a calibration for the conditions in question.展开更多
BACKGROUND: This study aimed to evaluate emergency medicine doctors' accuracy in predicting the need of film printing in a simulated setting of computed radiography and assess whether this can facilitate optimal pat...BACKGROUND: This study aimed to evaluate emergency medicine doctors' accuracy in predicting the need of film printing in a simulated setting of computed radiography and assess whether this can facilitate optimal patient care.METHODS: Cross sectional study was conducted from 20 March 2009 to 3 April 2009 in 1334 patients. After clinical assessment of those patients who needed X-ray examination, doctors in the emergency department would indicate whether film printing was necessary for subsequent patient care in a simulated computed radiography setting. The fi nal discharge plan was then retrieved from each patient record. Accuracy of doctors' prediction was calculated by comparing the initial request for radiographic film printing and the final need of film. Doctors with different level of emergency medicine experience would also be analyzed and compared.RESULTS: The sensitivity of predicting fi lm printing was 84.5% and the specifi city of predicting no fi lm printing was 91.2%. Positive predictive value was 88.4% while negative predictive value was 88.2%. The overall accuracy was 88.2%. The accuracy of doctors stratified into groups of fellows, higher trainees and basic trainees were 85.4%, 90.5% and 88.5% respectively (P=0.073).CONCLUSIONS: Our study showed that doctors can reliably predict whether film printing is needed after clinical assessment of patients, before actual image viewing. Advanced indication for film printing at the time of imaging request for selected patients can save time for all parties with minimal wastage.展开更多
A new method in diffraction-enhanced imaging computed tomography (DEI-CT) that follows the idea developed by Chapman et al. [Chapman D, Thomlinson W, Johnston R E, Washburn D, Pisano E, Gmur N, Zhong Z, Menk R, Arfe...A new method in diffraction-enhanced imaging computed tomography (DEI-CT) that follows the idea developed by Chapman et al. [Chapman D, Thomlinson W, Johnston R E, Washburn D, Pisano E, Gmur N, Zhong Z, Menk R, Arfelli F and Sayers D 1997 Phys. Med. BioL 42 2015] in 1997 is proposed in this paper. Merged with a "reverse projections" algorithm, only two sets of projection datasets at two defined orientations of the analyzer crystal are needed to reconstruct the linear absorption coefficient, the decrement of the real part of the refractive index and the linear scattering coefficient of the sample. Not only does this method reduce the delivered dose to the sample without degrading the image quality, but, compared with the existing DEI-CT approaches, it simplifies data-acquisition procedures. Experimental results confirm the reliability of this new method for DEI-CT applications.展开更多
Computed radiography(CR)imaging has high irradiation tolerance and it is easy to archive CR images along with other image information by Digital Imaging and Communications in Medicine(DICOM)format,and to process them....Computed radiography(CR)imaging has high irradiation tolerance and it is easy to archive CR images along with other image information by Digital Imaging and Communications in Medicine(DICOM)format,and to process them.CR can be used in radiation Quality Control(QC)task and verification of treatment setting-up.In this paper,the role of high-energy CR in radiation oncology is studied.The patients were imaged by CR system and EPID before radiotherapy.All verification images were acquired with 1–2 MU(Monitor Unit)using 6 MV X-rays.QC for a linac was done with film and high-energy CR to collect the data on daily,weekly and monthly basis.The QC included Multileaf Collimators(MLC)calibration and mechanical iso-centre check.CR was also adapted to verify patient position,the film was used to compare with digitally reconstructed radiographs(DRR)and portal image from EPID. Treatment setting-up was verified based on the result of comparison.High quality verification images could be acquired by the CR system.Comparing to EPID,the results showed that the system was suitable for practical use to acquire daily verification images,and it was useful to fulfill part of quality assurance(QA)in radiation oncology.The quality of image acquired by the high-energy CR system is comparable or even better than DRRs and portal images. The final treatment set-up for the patients could be verified more accurately with the CR system.展开更多
This paper studied the thermal physical properties of foundation materials in the molten salt tank of thermal energy storage system after molten salt leakage by Transient plane source experiment and X-ray computed mic...This paper studied the thermal physical properties of foundation materials in the molten salt tank of thermal energy storage system after molten salt leakage by Transient plane source experiment and X-ray computed microtomography simulation methods.The microstructure,thermal properties and pressure resistance with different particle diameters were addressed.The measured heat conductivities from Transient plane source experiment for three cases are 0.49 W/(m·K),0.48 W/(m·K),and 0.51 W/(m·K),and the porosity is 30.1%,30.7%,and 31.2% respectively.The heat conductivity simulating results of three cases are 0.471 W/(m·K),0.482W/(m·K),and 0.513 W/(m·K).The ratio of difference between the results of simulation and Transient plane source measurement is as low as 1.2%,verifying the reliability of experimental and simulation results to a certain degree.Compared with the heat conductivity of 0.097-0.129 W/(m·K) and porosity of 71.6%-78.9% without leaking salt,the porosity is reduced by more than 50% while the heat conductivity increased by 4 to 5 times after molten salt leakage.This significant increase in heat conductivity has a great impact on security operation,structure design,and modeling of the tank foundation for solar power plants.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41877267 and 41877260)the Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA13010201).
文摘Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL samples were utilized for training the support vector machine(SVM)-,random forest(RF)-,and back propagation neural network(BPNN)-based models,respectively.Simultaneously,the machine learning model was embedded into genetic algorithm(GA)for parameter optimization to effectively predict uniaxial compressive strength(UCS)of CRL.Results indicate that the BPNN model with five hidden layers presents the best training effect in the data set of CRL.The SVM-based model shows a tendency to overfitting in the training set and poor generalization ability in the testing set.The RF-based model is suitable for training CRL samples with large data.Analysis of Pearson correlation coefficient matrix and the percentage increment method of performance metrics shows that the dry density,pore structure,and porosity of CRL are strongly correlated to UCS.However,the P-wave velocity is almost uncorrelated to the UCS,which is significantly distinct from the law for homogenous geomaterials.In addition,the pore tensor proposed in this paper can effectively reflect the pore structure of coral framework limestone(CFL)and coral boulder limestone(CBL),realizing the quantitative characterization of the heterogeneity and anisotropy of pore.The pore tensor provides a feasible idea to establish the relationship between pore structure and mechanical behavior of CRL.
基金Projects(41572277,41877229) supported by the National Natural Science Foundation of ChinaProject(2015A030313118) supported by the Natural Science Foundation of Guangdong Province,ChinaProject(201607010023) supported by the Science and Technology Program of Guangzhou,China
文摘A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d<0.075 mm,0.075 mm≤d<0.1 mm,0.1 mm≤d<0.2 mm,0.2 mm≤d<0.5 mm and 0.5 mm≤d<1.0 mm)to study the structures and particle contacts of granite residual soil.The X-ray micro computed tomography method was used to reconstruct the microstructure of granite residual soil.The particle was identified and regularized using principal component analysis(PCA).The particle contacts and geometrical characteristics in 3D space were analyzed and summarized using statistical analyses.The results demonstrate that the main types of contact among the particles are face-face,face-angle,face-edge,edge-edge,edge-angle and angle-angle contacts for particle sizes less than 0.2 mm.When the particle sizes are greater than 0.2 mm,the contacts are effectively summarized as face-face,face-angle,face-edge,edge-edge,edge-angle,angle-angle,sphere-sphere,sphere-face,sphere-edge and sphere-angle contacts.The differences in porosity among the original sample,reconstructed sample and regularized sample are closely related to the water-swelling and water-disintegrable characteristics of granite residual soil.
基金financially supported by the National Natural Science Foundation of China(No.51304076)the Natural Science Foundation of Hunan Province,China(No.14JJ4064)
文摘Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.
基金Funded by the National Natural Science Foundation of China(No.51072035),the Ph D Program’s Foundation of Ministry of Education of China(No.20090092110029)the Research Innovation Program for College Graduates of Jiangsu Province(No.CXZZ_0145)the Scientific Research Foundation of Graduate School of Southeast University(Nos.YBJJ1127 and YBPY1208)
文摘The bio-sandstone, which was cemented by microbe cement, was firstly prepared, and then the microstructure evolution process was studied by X-ray computed tomography (X-CT) technique. The experimental results indicate that the microstructure of bio-sandstone becomes dense with the development of age. The evolution of inner structure at different positions is different due to the different contents of microbial induced precipitation calcite. Besides, the increase rate of microbial induced precipitation calcite gradually decreases because of the reduction of microbe absorption content with the decreasing pore size in bio-sandstone.
基金This work was supported by the National Key R&D Program of China(2016YFD0300110,2016YFD0300101)the earmarked fund for China Agriculture Research System(CARS-02-25)the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences。
文摘The most significant problem of maize grain mechanical harvesting quality in China at present is the high grain breakage rate(BR).BR is often the key characteristic that is measured to select hybrids desirable for mechanical grain harvesting.However,conventional BR evaluation and measurement methods have challenges and limitations.Microstructural crack parameters evaluation of maize kernel is of great importance to BR.In this connection,X-ray computed microtomography(μ-CT)has proven to be a quite useful method for the assessment of microstructure,as it provides important microstructural parameters,such as object volume,surface,surface/volume ratio,number of closed pores,and others.X-ray computed microtomography is a non-destructive technique that enables the reuse of samples already measured and also yields bidimensional(2D)cross-sectional images of the sample as well as volume rendering.In this paper,six different maize hybrid genotypes are used as materials,and the BR of the maize kernels of each variety is tested in the field mechanical grain harvesting,and the BR is used as an index for evaluating the breakage resistance of the variety.The crack characteristic parameters of kernel were detected by X-ray micro-computed tomography,and the relationship between the BR and the kernel crack characteristics was analyzed by stepwise regression analysis.Establishing a relationship between crack characteristic parameters and BR of maize is vital for judging breakage resistance.The results of stepwise multiple linear regression(MLR)showed that the crack characteristics of the object surface,number of closed pores,surface of closed pores,and closed porosity percent were significantly correlated to the BR of field mechanical grain harvesting,with the standard partial regression coefficients of–0.998,–0.988,–0.999,and–0.998,respectively.The R2 of this model was 0.999.Results validation showed that the Stepwise MLR Model could well predict the BR of maize based on these four variables.
基金financially supported by the National Science Foundation of China-Yunnan Joint Fund(U1502232)the Natural Science Foundation of Yunnan Province(2014FD007)the Natural Science Foundation of Kunming University of Science and Technology(KKSY201406009)
文摘The three dimensional (3D) geometry of soil macropores largely controls preferential flow, which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability. However, detailed studies on the 3D geometry of macropore networks in forest soils are rare. The intense rainfall-triggered potentially unstable slopes were threatening the villages at the downstream of Touzhai valley (Yunnan, China). We visualized and quantified the 3D macropore networks in undisturbed soil columns (Histosols) taken from a forest hillslope in Touzhai valley, and compared them with those in agricultural soils (corn and soybean in USA; barley, fodder beet and red fescue in Denmark) and grassland soils in USA. We took two large undisturbed soil columns (250 mm^25o mmxsoo mm), and scanned the soil columns at in-situ soil water content conditions using X-ray computed tomography at a voxel resolution of 0.945 × 0.945 × 1.500o mm^3. After reconstruction and visualization, we quantified the characteristics of macropore networks. In the studied forest soils, the main types of maeropores were root channels, inter-aggregate voids, maeropores without knowing origin, root-soil interfaee and stone-soil interface. While maeropore networks tend to be more eomplex, larger, deeper and longer. The forest soils have high maeroporosity, total maeropore wall area density, node density, and large maeropore volume, hydraulie radius, mean maeropore length, angle, and low tortuosity. The findings suggest that maeropore networks in the forest soils have high inter- connectivity, vertical continuity, linearity and less vertically oriented.
基金support from the EPSRC under grants EP/L014289/1 EP/N032888/1 and EP/M014045/1the STFC Global Challenges Network in Batteries and Electrochemical Energy Devices under the grant ST/N002385/1 for facilitation of travelfunding from the Royal Academy of Engineering
文摘Redox flow batteries offer a potential solution to an increase in renewable energy generation on the grid by offering long-term, large-scale storage and regulation of power. However, they are currently un- derutilised due to cost and performance issues, many of which are linked to the microstructure of the porous carbon electrodes used. Here, for the first time, we offer a detailed study of the in situ effects of compression on a commercially available carbon felt electrode. Visualisation of electrode structure us- ing X-ray computed tomography shows the non-linear way that these materials compress and various metrics are used to elucidate the changes in porosity, pore size distribution and tortuosity factor under compressions from 0%-90%.
文摘Background: Computed radiography has a wider exposure latitude when compared with film-screen imaging system. Consequently, the risk of dose creep is high. A conscientious effort is there-fore, needed by the radiographer to keep exposure as low as reasonably achievable. Objective: To derive a computed radiography exposure chart for a negroid population using AGFA photostimulable phosphor plates and a GE static X-ray machine. Materials and Method: A static X-ray machine, a digitizer, and photostimulable phosphor plates were used for the X-ray examination. Chest examinations were done at a Focus-Film-Distance (FFD) of 150 - 180 cm while all other examinations were conducted at 90 - 100 cm FFD. The range of exposure factors (kVp, mA and mAs) used by radiog-raphers in the centre was noted and the 90th percentile calculated. Over a three-month period, the patients were examined with the 90th percentile of tube potential (kVp) while keeping other factors constant. The kVp was gradually decreased and halted if radiologists and radiographers uncon-nected with the work expressed misgivings about the quality of the image. A similar procedure was adopted for the tube current (mA). The threshold adopted as low as reasonably achievable was the factor preceding the point of observation by other personnel. Metrics for central tendency from the statistical packages for social sciences, version 17.0 was used to analyze the data. Results: 335 subjects of both gender aged 0 - 92 years were examined by the researchers. Adult exposure factors used by the radiographers (and those derived by the researchers) had a range of 45 - 130 kVp (62 - 94 kVp), 63 - 320 mA (100 - 250 mA) and 4.0 - 25.0 mAs (5.0 - 20.0 mAs) respectively. Pediatric chest (and researchers-derived) factors were 50 - 75 kVp (52 - 65 kVp), 50 - 250 mA (100 - 220 mA) and 3.20 - 10.0 mAs (3.2 - 6.5 mAs) respectively. Conclusion: Upper threshold of adult (and paediatric) exposure factors in computed radiography with comparable equipment and accessories should not exceed 94 kVp (65 kVp), 250 mA (220 mA) and 20.0 mAs (6.5 mAs) respectively. The derived exposure chart is also adequate to address motion unsharpness in chest examinations.
基金Supported by the National Key Research and Development Program of China(Nos.2018YFD0900901,2019YFD0901300)the Scientific Research Fund of the Second Institute of Oceanography,MNR(Nos.JG1906,JG1616,JG1910)+4 种基金the National Natural Science Foundation of China(Nos.41606192/41176140,41706125,41806136)the National Science&Technology Basic Work Program of China(No.2015FY110600)the Key Projects of Philosophy and Social Sciences Research,Ministry of Education,China(No.18JZD059)the Zhejiang Qingshan Lake Innovation Platform for Marine Science and Technology(No.2017E80001)the Project of Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea(No.LORCE,14282)。
文摘Conspecific seagrass living in differing environments may develop different root system acclimation patterns.We applied X-ray computed tomography(CT)for imaging and quantifying roots systems of Zostera japonica collected from typical oligotrophic and eutrophic sediments in two coastal sites of northern China,and determined sediment physicochemical properties that might influence root system morphology,density,and distribution.The trophic status of sediments had little influence on the Z.japonica root length,and diameters of root and rhizome.However,Z.japonica in oligotrophic sediment developed the root system with longer rhizome node,deeper rhizome distribution,and larger allocation to below-ground tissues in order to acquire more nutrients and relieve the N deficiency.And the lower root and rhizome densities of Z.japonica in eutrophic sediment were mainly caused by fewer shoots and shorter longevity,which was resulted from the more serious sulfide inhibition.Our results systematically revealed the effect of sediment trophic status on the phenotypic plasticity,quantity,and distribution of Z.japonica root system,and demonstrated the feasibly of X-ray CT in seagrass root system research.
文摘Conventional radiography with film (CRF) has been in use for diagnostic purposes for a long time now. It has proved to be a great assert for the radiographers in assessing various abnormalities. With recent advances in technology it is now possible to have digital solutions for radiography problems at a very cost effective, environment friendly and also with better image quality in certain applications when compared to CRF. Rather than using a CRF a computed radiography (CR) uses imaging plates to capture the image. The imaging plate contains photosensitive phosphors which contain the latent image. Later this plate is introduced into a reader which is then converted into a digital image. The major advantage and the cost effective element of this system is the ability to reuse the imaging plates unlike the photographic film where in only a single image can be captured and cannot be reused. The computed radiography drastically reduces the cost by eliminating the use of chemicals like film developers and fixers and also the need for a storage room. It also helps to reduce the costs that are involved in the disposal of wastes due to conventional radiography. This paper investigates whether it is cost effective to use computed radiography over film based system at Al-Batnan Medical Center (BMC), Tobruk, Libya by using Cost Benefit Analysis (CBA). Apart from the initial cost of the CR System, based on the data collected from the center, from the year 2008 to 2012 (until June 2012) a total of 581,566 images were produced with the total cost incurred using film based system being USD 4,652,528. If the same number of images were produced using a CR system the total cost incurred would have been USD 82,600. Taking into consideration the cost of a new CR system to be USD 120,000 the overall cost of producing these images is USD 202,600. It is observed that an amount of USD 4,449,928 could have been saved over the period of 5 years starting from 2008 to 2012 by using the CR system at BMC. Using Cost Benefit Analysis, the average value of the net difference between the costs and benefits for the conventional film based system is ?83.38 where as for the Computed System it is 22.06. Based on the principles of Cost Benefit Analysis it can be concluded that the system with a net positive difference is more cost beneficial than the other. With the help of the above two analysis it can be concluded that the use of computed radiography is definitely more cost effective for use at BMC, when compared to the conventional x-ray radiography.
文摘Objective: Maxillofacial injuries are one of the commonest injuries encountered. Roentgenographic evaluation of maxillofacial trauma is of prime importance for diagnosis and treatment of these injuries. Study Design: Forty patients were evaluated in the prospective four-year study. We studied and evaluated the demography and diagnostic efficacy of clinical, plain radiography, and computed scan in maxillofacial trauma. Result: Road traffic accidents were the commonest cause of maxillofacial injuries. Patients having multiple fractures, mandibular fractures were the commonest. Conclusion: Computed tomography proved a useful adjunct in midfacial trauma.
文摘Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can be used to identify each of these anomalies in the chest x-ray images. Convolutional neural networks (CNNs) have shown great success in the fields of image recognition and image classification since there are numerous large-scale annotated image datasets available. The classification of medical images, particularly radiographic images, remains one of the biggest hurdles in medical diagnosis because of the restricted availability of annotated medical images. However, such difficulty can be solved by utilizing several deep learning strategies, including data augmentation and transfer learning. The aim was to build a model that would detect abnormalities in chest x-ray images with the highest probability. To do that, different models were built with different features. While making a CNN model, one of the main tasks is to tune the model by changing the hyperparameters and layers so that the model gives out good training and testing results. In our case, three different models were built, and finally, the last one gave out the best-predicted results. From that last model, we got 98% training accuracy, 84% validation, and 81% testing accuracy. The reason behind the final model giving out the best evaluation scores is that it was a well-fitted model. There was no overfitting or underfitting issues. Our aim with this project was to make a tool using the CNN model in R language, which will help detect abnormalities in radiography images. The tool will be able to detect diseases such as Pneumonia, Covid-19, Effusions, Infiltration, Pneumothorax, and others. Because of its high accuracy, this research chose to use supervised multi-class classification techniques as well as Convolutional Neural Networks (CNNs) to classify different chest x-ray images. CNNs are extremely efficient and successful at reducing the number of parameters while maintaining the quality of the primary model. CNNs are also trained to recognize the edges of various objects in any batch of images. CNNs automatically discover the relevant aspects in labeled data and learn the distinguishing features for each class by themselves.
文摘Damage assessments in three dimensional (3D) textile composites subjected to mechanical loading can be performed by non-destructive and destructive techniques.This paper applies the two techniques to investigate the fracture behavior of 3D tufted textile composites.X-ray computed tomography as a non-destructive evaluation method is appropriate to detect damage locations and identify their progression in 3D textile composites.Destructive methods such as sectioning toward observing damage provide valuable information about damage patterns.The results of this research could be utilized to evaluate the initial cause of rupture in 3D tufted composites used in aerospace structures and analyze fracture modes and damage progression.
文摘Soil cores from a field growing barley and barley mutants without root hairs under conventional and minimum tillage were sampled. They were X-ray scanned to produce a 3D image and then the roots were washed out and weight and length were determined by conventional means. Root volume and surface area were then calculated from the 3D images using state of the art software and methodology, and the measured and calculated measures were correlated. The only strong and significant correlation was between measured weight and calculated volume for mutants without root hairs. It is concluded that the software cannot segment out very small roots, but segmentation accuracy also depends on root structure in some unknown way. Any study using X-ray computed tomography to quantify roots as they grow in situ should start with a calibration for the conditions in question.
文摘BACKGROUND: This study aimed to evaluate emergency medicine doctors' accuracy in predicting the need of film printing in a simulated setting of computed radiography and assess whether this can facilitate optimal patient care.METHODS: Cross sectional study was conducted from 20 March 2009 to 3 April 2009 in 1334 patients. After clinical assessment of those patients who needed X-ray examination, doctors in the emergency department would indicate whether film printing was necessary for subsequent patient care in a simulated computed radiography setting. The fi nal discharge plan was then retrieved from each patient record. Accuracy of doctors' prediction was calculated by comparing the initial request for radiographic film printing and the final need of film. Doctors with different level of emergency medicine experience would also be analyzed and compared.RESULTS: The sensitivity of predicting fi lm printing was 84.5% and the specifi city of predicting no fi lm printing was 91.2%. Positive predictive value was 88.4% while negative predictive value was 88.2%. The overall accuracy was 88.2%. The accuracy of doctors stratified into groups of fellows, higher trainees and basic trainees were 85.4%, 90.5% and 88.5% respectively (P=0.073).CONCLUSIONS: Our study showed that doctors can reliably predict whether film printing is needed after clinical assessment of patients, before actual image viewing. Advanced indication for film printing at the time of imaging request for selected patients can save time for all parties with minimal wastage.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB825800)the National Natural Science Foundation of China(Grant Nos.11205189,11375225,and U1332109)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant Nos.KJCX2-YW-N42,Y4545320Y2,and 542014IHEPZZBS50659)
文摘A new method in diffraction-enhanced imaging computed tomography (DEI-CT) that follows the idea developed by Chapman et al. [Chapman D, Thomlinson W, Johnston R E, Washburn D, Pisano E, Gmur N, Zhong Z, Menk R, Arfelli F and Sayers D 1997 Phys. Med. BioL 42 2015] in 1997 is proposed in this paper. Merged with a "reverse projections" algorithm, only two sets of projection datasets at two defined orientations of the analyzer crystal are needed to reconstruct the linear absorption coefficient, the decrement of the real part of the refractive index and the linear scattering coefficient of the sample. Not only does this method reduce the delivered dose to the sample without degrading the image quality, but, compared with the existing DEI-CT approaches, it simplifies data-acquisition procedures. Experimental results confirm the reliability of this new method for DEI-CT applications.
基金Supported by the Municipal Health Bureau of Shanghai(Contract No.04017)
文摘Computed radiography(CR)imaging has high irradiation tolerance and it is easy to archive CR images along with other image information by Digital Imaging and Communications in Medicine(DICOM)format,and to process them.CR can be used in radiation Quality Control(QC)task and verification of treatment setting-up.In this paper,the role of high-energy CR in radiation oncology is studied.The patients were imaged by CR system and EPID before radiotherapy.All verification images were acquired with 1–2 MU(Monitor Unit)using 6 MV X-rays.QC for a linac was done with film and high-energy CR to collect the data on daily,weekly and monthly basis.The QC included Multileaf Collimators(MLC)calibration and mechanical iso-centre check.CR was also adapted to verify patient position,the film was used to compare with digitally reconstructed radiographs(DRR)and portal image from EPID. Treatment setting-up was verified based on the result of comparison.High quality verification images could be acquired by the CR system.Comparing to EPID,the results showed that the system was suitable for practical use to acquire daily verification images,and it was useful to fulfill part of quality assurance(QA)in radiation oncology.The quality of image acquired by the high-energy CR system is comparable or even better than DRRs and portal images. The final treatment set-up for the patients could be verified more accurately with the CR system.
基金supported by the National Natural Science Foundation of China (52036008)。
文摘This paper studied the thermal physical properties of foundation materials in the molten salt tank of thermal energy storage system after molten salt leakage by Transient plane source experiment and X-ray computed microtomography simulation methods.The microstructure,thermal properties and pressure resistance with different particle diameters were addressed.The measured heat conductivities from Transient plane source experiment for three cases are 0.49 W/(m·K),0.48 W/(m·K),and 0.51 W/(m·K),and the porosity is 30.1%,30.7%,and 31.2% respectively.The heat conductivity simulating results of three cases are 0.471 W/(m·K),0.482W/(m·K),and 0.513 W/(m·K).The ratio of difference between the results of simulation and Transient plane source measurement is as low as 1.2%,verifying the reliability of experimental and simulation results to a certain degree.Compared with the heat conductivity of 0.097-0.129 W/(m·K) and porosity of 71.6%-78.9% without leaking salt,the porosity is reduced by more than 50% while the heat conductivity increased by 4 to 5 times after molten salt leakage.This significant increase in heat conductivity has a great impact on security operation,structure design,and modeling of the tank foundation for solar power plants.