A novel soft chemical approach was developed to synthesize tin oxide-based powders. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning ele...A novel soft chemical approach was developed to synthesize tin oxide-based powders. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning electron microscope and electrochemical methods. The results show that the particles of tin oxide-based materials form an interconnected network structure like mesoporous material. The average size of the particles is about 200 nm. The materials deliver a charge capacity of more than 570 mA·h·g-1. And the capacity loss per cycle is about 0.15% after being cycled for 30 times. The good electrochemical performance indicates that tin oxide-based materials are promising anodes for lithium ion batteries.展开更多
Sm3+-activated Y2028 red phosphors were prepared by the combustion method and microemulsion method at the first time. X-ray characterization and electron diffraction show that, Y202S:Sm3+, Ti4+, Mg2+ samples prep...Sm3+-activated Y2028 red phosphors were prepared by the combustion method and microemulsion method at the first time. X-ray characterization and electron diffraction show that, Y202S:Sm3+, Ti4+, Mg2+ samples prepared by these two methods are pure hexagonal crystals in structure with a trivial change due to dopants. Scanning electron microscopy (SEM) results show that the product presents an almond-like sheet in uniform size. Under the excitation of 269 nm ultraviolet light, Y202S:Sm3+ samples fabricated by these two methods exhibit three main groups of red emission lines located at 564, 604, and 656 nm, respectively, which are attributed to the transitions of 4G5/2 →6H5/2, 4G~/2 →6H7/2, 4G5/2 →6H9/2, respectively. The samples prepared by microemulsion are seven times higher in fluorescent emission intensity and half time longer in afterglow time than that prepared by combustion.展开更多
In this paper,we report the chemical synthesis of oligonucleotide d-TGGGT using phosphotriester method.The protected pentamer d-MmtTGibGibGibT(=p-ClC6H_4-O(O)P)was deblocked by treatment with concentrated ammonium hyd...In this paper,we report the chemical synthesis of oligonucleotide d-TGGGT using phosphotriester method.The protected pentamer d-MmtTGibGibGibT(=p-ClC6H_4-O(O)P)was deblocked by treatment with concentrated ammonium hydroxide and 80% acetic acid.The pure d-TGGGT obtained by chromatorgraphy on DEAE-Sephadex A-25 and Q-Sepharose FF could be hydrolyzed completely and confirmed by base ratio.展开更多
Saturated Ca(OH)2 and AlCl3 solutions were used to synthesize calcium aluminate hydrate precipitates at room temperature; high purity calcium aluminate powders with stable phases were made by calcination of the prec...Saturated Ca(OH)2 and AlCl3 solutions were used to synthesize calcium aluminate hydrate precipitates at room temperature; high purity calcium aluminate powders with stable phases were made by calcination of the precursors at a temperature as low as 1100℃. PSD and BET analysis revealed the particles with sizes ranging from submicrometer to several micrometers and with a specific area of 13 m^2/g. The measurement of hydraulic exotherm revealed that the exothennal rate is in peak for about 2 h. The exothermal quantities are 449.24 J/g at 12 h and 488.38 J/g at 24 h. Its strength development is quick and the 1 day curing strength is almost equal to 100% of the 3 days curing strength in the mortar test.展开更多
This article reviews the main chemical synthesis methods of sex pheromone of Asian corn borer, common strategies for constructing dou-ble bond, molecular composition and field application progress of sex pheromone of ...This article reviews the main chemical synthesis methods of sex pheromone of Asian corn borer, common strategies for constructing dou-ble bond, molecular composition and field application progress of sex pheromone of Asian corn borer, which will provide reference for biological control of Asian corn borer.展开更多
The rapid progress of modern technologies has accelerated the prominence of thermal expansion mismatch between materials,and tunable thermal expansion materials will be a powerful safeguard against this challenge.Here...The rapid progress of modern technologies has accelerated the prominence of thermal expansion mismatch between materials,and tunable thermal expansion materials will be a powerful safeguard against this challenge.Here,isotropic MHfF_(6)(M=Ca,Mn,Fe,and Co)compounds with tunable thermal expansion have been produced via a low-cost synthetic method and investigated.By utilizing temperature dependent X-ray diffraction(XRD)and Raman spectroscopy,combined with first principles calculations,it was revealed that the transverse thermal vibrations of the F atoms are dominated by low-frequency phonons with negative Grüneisen parameters and are therefore the origin of the negative thermal expansion(NTE).Very interestingly,with the increase of the M atomic number,the metal…F atomic linkages become stiffer,reducing the number of vibrational modes with negative Grüneisen parameters,so that the strong NTE can be gradually adjusted to moderate NTE and to near zero thermal expansion.The present study achieves the tunable thermal expansion in a new compound family and shed light on the internal mechanism from the perspective of lattice vibrational dynamics.展开更多
Comprehensive Summary The strategy of removable glycosylation modification was used to overcome the low-efficiency problem encountered in the chemical synthesis of the mirror-image D-version of the immunoglobulin(Ig)-...Comprehensive Summary The strategy of removable glycosylation modification was used to overcome the low-efficiency problem encountered in the chemical synthesis of the mirror-image D-version of the immunoglobulin(Ig)-like domain of tropomyosin receptor kinase A(DlgCTrkA),a protein molecule needed for mirror-image screening of D-peptide ligands targeting this cell membrane receptor.It was found that O-linked-β-N-acetyl-D-glucosamine(O-GlcNAc)modification at^(D)Ser^(312),or^(D)Ser^(320)can significantly improve the efficiency of DlgCTrkA synthesis and folding,while O-GlcNAc modification at^(D)Ser^(330)showed barely any improvement.This study provides a new example demonstrating the power of the removable glycosylation modification strategy in the chemical synthesis and folding of difficult-to-obtain proteins.It also presents evidence that removable glycosylation modification at different sites would significantly affect the efficiency of protein folding promoted by this strategy.展开更多
Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesi...Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesizing daidzein was developed in this work.In this article,a two-step synthesis of daidzein(Friedel–Crafts acylation and[5+1]cyclization)was developed via the employment of trifluoromethanesulfonic acid(TfOH)as an effective promoting reagent.The effect of reaction conditions such as solvent,the amount of TfOH,reaction temperature,and reactant ratio on the conversion rate and the yield of the reaction,respectively,was systematically investigated,and daidzein was obtained in 74.0%isolated yield under optimal conditions.Due to the facilitating effect of TfOH,the Friedel–Crafts acylation was completed within 10 min at 90℃ and the[5+1]cyclization was completed within 180 min at 25℃.In addition,a possible reaction mechanism for this process was proposed.The results of the study may provide useful guidance for industrial production of daidzein on a large scale.展开更多
Different chemical compositions of soil organic carbon(SOC)affect its persistence and whether it signifi-cantly differs between natural forests and plantations remains unclear.By synthesizing 234 observations of SOC c...Different chemical compositions of soil organic carbon(SOC)affect its persistence and whether it signifi-cantly differs between natural forests and plantations remains unclear.By synthesizing 234 observations of SOC chemical compositions,we evaluated global patterns of concentra-tion,individual chemical composition(alkyl C,O-alkyl C,aromatic C,and carbonyl C),and their distribution even-ness.Our results indicate a notably higher SOC,a markedly larger proportion of recalcitrant alkyl C,and lower easily decomposed carbonyl C proportion in natural forests.How-ever,SOC chemical compositions were appreciably more evenly distributed in plantations.Based on the assumed con-ceptual index of SOC chemical composition evenness,we deduced that,compared to natural forests,plantations may have higher possible resistance to SOC decomposition under disturbances.In tropical regions,SOC levels,recalcitrant SOC chemical composition,and their distributed evenness were significantly higher in natural forests,indicating that SOC has higher chemical stability and possible resistance to decomposition.Climate factors had minor effects on alkyl C in forests globally,while they notably affected SOC chemi-cal composition in tropical forests.This could contribute to the differences in chemical compositions and their distrib-uted evenness between plantations and natural stands.展开更多
Research on the synthesis of superoxide dismutase mimics by chemical and biologi-cal synthetic methods were reviewed.The advantages and limitations were analyzed.A prospect for the future development of superoxide dis...Research on the synthesis of superoxide dismutase mimics by chemical and biologi-cal synthetic methods were reviewed.The advantages and limitations were analyzed.A prospect for the future development of superoxide dismutase mimics is proposed.展开更多
Snake toxin Calciseptine as a natural antagonist of L-type calcium channel has potential drug values, but its structural information remains unknown. Here, we report the total chemical synthesis of Calciseptine by usi...Snake toxin Calciseptine as a natural antagonist of L-type calcium channel has potential drug values, but its structural information remains unknown. Here, we report the total chemical synthesis of Calciseptine by using hydrazide based native chemical ligation. The crystal structure of Calciseptine was determined by racemic protein crystallography technique. Compared to the structure of its homologous family protein, we found that Calciseptine is adopting a typical three-finger structure.展开更多
Thermodynamics for chemical vapor synthesis (CVS) of Nb nanopowder in NbCl5-H2-Ar system was investigated by using FactSage software. The validation experiments were conducted to confirm the thermodynamics points. T...Thermodynamics for chemical vapor synthesis (CVS) of Nb nanopowder in NbCl5-H2-Ar system was investigated by using FactSage software. The validation experiments were conducted to confirm the thermodynamics points. The results indicate that under the atmospheric pressure, the reduction approach from NbCl5(g) to Nb(s) is a stage-wise process with the formation of complex sub-chlorides, and is controllable at low hydrogen ratio (mole ratio of n(NbCl5):n(H2)<1:180) and low temperature (<1050 °C). Furthermore, a reasonable amount of inert loading gas is favorable to increase the reduction ratio of NbCl5 and the powder yield. The as-synthesized Nb nanopowder with the homogeneous size of 30-50 nm and the powder yield of 85% (mass fraction) is obtained by the CVS process under n(NbCl5):n(H2):n(Ar)=1:120:1 and 950 °C with the NbCl5 reduction rate of 96.1%.展开更多
Subject Code:C06 With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Dai Junbiao(戴俊彪)from Tsinghua University reported the complete chemical synthesis of t...Subject Code:C06 With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Dai Junbiao(戴俊彪)from Tsinghua University reported the complete chemical synthesis of the yeast chromosome XII,which was published in Science(2017,355:1049—1055).To understand the origin of life,scientists have long been challenged whether an artificial living展开更多
Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 p...Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 powders doped with different yttrium contents were successfully synthesized using a chemical precipitation method, under an alkalescent condition. Properties of the obtained samples were characterized and analyzed with X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX), transmission electron microscopy (TEM), infrared (IR) absorbance, and the BET method. For the prepared samples with 20% (molar ratio) Y-doped content, a BET specific surface area of 106. 6 m^2 · g^- 1, with an average pore size of3~27 nm were obtained. XRD patterns showed that the doped samples were with a cubic fluorite structure. TEM micrographs revealed that the doped samples showed a spherical morphology with a diameter ranging from 20 to 30 nm and a round pore shape. IR results indicated that the Ce-O-Ce vibration intensity decreased as the Y-doped content increased. N2 adsorption-desorption isotherms showed that the samples possessed typical mesopore characteristics. The average pore size of the samples decreased alter mesoporous CeO2 was doped with yttrium, and the average pore size decreased largely as the Y-doped content increased.展开更多
Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO-A1203-SiO2 and CaO--MgO-SiO2 systems, and their bending strengths up to 53.47 MPa and 99....Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO-A1203-SiO2 and CaO--MgO-SiO2 systems, and their bending strengths up to 53.47 MPa and 99.84 MPa, respectively, were obtained. The presence of anorthite, a-quartz, magnetite, and pyroxene crystals (augite and diopside) in the steel slag ceramics were very different from the composition of traditional ceramics. X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA) results illustrated that the addition of steel slag reduced the temperature of extensive liquid generation and further decreased the firing temperature. The considerable contents of glass-modifying oxide liquids with rather low viscosities at high temperature in the steel slag ceramic adobes promoted element diffusion and crystallization. The results of this study demonstrated a new approach for extensive and effective recycling of steel slag.展开更多
Recently, medicinal peptide molecules are of great interest to many international pharmaceutical companies, mainly because of their relatively lower research costs, shorter research cycles, and the greater likelihood ...Recently, medicinal peptide molecules are of great interest to many international pharmaceutical companies, mainly because of their relatively lower research costs, shorter research cycles, and the greater likelihood of being drugs, when compared with traditional small molecules. Due to the great variety in molecule structures and the diverse biological functions, disulfide-rich peptide toxins have become a shining molecular library for the development of polypeptide drugs. In view of the increasing amount of related publications, here we summarize the discovery, structural elucidation and chemical synthesis of disulfide-rich peptide toxins and their analogs.展开更多
We used a chemical reduction method to synthesize the catalysts of cobalt(Co) and cobalt-ruthenium(Co-Ru) bifunctional supported on carbon nanotubes(CNTs) for Fischer–Tropsch synthesis(FTS) in a fixedbed reactor. The...We used a chemical reduction method to synthesize the catalysts of cobalt(Co) and cobalt-ruthenium(Co-Ru) bifunctional supported on carbon nanotubes(CNTs) for Fischer–Tropsch synthesis(FTS) in a fixedbed reactor. These Co-Ru/CNTs catalysts were synthesized with various weight proportions of Ru/Co(0.1 to 0.4 wt%) with keeping a fixed amount of cobalt(10 wt%). Moreover, for comparison purpose, CNTs supported Co-and Co(Ru)-based catalysts at same loading as the above catalysts were prepared through impregnation method. We characterize the present catalysts through the various techniques such as Energy–dispersive X-ray(EDX), Transmission Electron Microscopy(TEM), Brunauer–Emmett–Teller(BET),Hydrogen-Temperature-Programmed Reduction(H_2-TPR), Hydrogen-Temperature-Programmed Desorption(H_2-TPD) and O_2 titration. Thus using the chemical reduction method, a narrow particle size distribution was obtained so that the small cobalt particles were confined inside the CNTs. The Co-based catalyst prepared by impregnation was compared with the Co-Ru catalysts at the same loading. The results demonstrated that the use of chemical reduction method led to decrease the average Co oxide cluster size to8.7 nm so that the reduction enhanced about 24% and stabilized an earlier time at the stream. Among the prepared catalysts, the results indicated that the Co-Ru/CNTs catalysts demonstrated high catalytic activity with the highest long-chain hydrocarbons(C_(5+)), selectivity up to 74.76%, which was higher than those we obtained by the Co-Ru/γ-Al_2O_3(61._20%), Co/CNTs(43.68%) and Co/γ-Al_2O_3(37.69%). At the same time, comparing with those catalyst synthesized by impregnation, the use of chemical reduction led to enhancement of the C_(5+) selectivity from 59.30% to 68.83% and increment in FTS rate about 11% for the Co-Ru/CNTs catalyst.展开更多
ZrO_2-SnO_2 composite nanoparticles were prepared by heating the hydrateprecursors synthesized by the chemical co-precipitation reaction of ZrOCl_2 and SnCl_4. Theprecursors were examined by differential thermal analy...ZrO_2-SnO_2 composite nanoparticles were prepared by heating the hydrateprecursors synthesized by the chemical co-precipitation reaction of ZrOCl_2 and SnCl_4. Theprecursors were examined by differential thermal analysis (DTA) and thermogravimetric analysis(TGA). The composite powder was characterized using X-ray diffraction (XRD), transmission electronmicroscopy (TEM) and desorption isotherm (Barrett-Joyner-Halenda method). The average crystal sizeof the nanoparticle ranges from 15 to 30 nm for the sample containing 5%-25% ZrO_2 (mass fraction).Most of the pores in the ZrO_2-SnO_2 nanoparticles are about 10-20 nm in diameter. The compositepowder is promising for chemical sensors.展开更多
The cell adhesive motif RGD tripeptide was synthesized by using a novel chemical method. First, Gly-Asp(GD) was synthesized in two steps including the chloroacetylation of free L-aspartic acid and the ammonolysis of...The cell adhesive motif RGD tripeptide was synthesized by using a novel chemical method. First, Gly-Asp(GD) was synthesized in two steps including the chloroacetylation of free L-aspartic acid and the ammonolysis of the chloroacetylated L-aspartic acid. The yield of chloroacetylated L-aspartic acid was 83.0%. For the ammonolysis of chloroacetylated L-aspartic acid, the yield of the ammonolyzed product was 92. 3%. Second, the coupling between Arg and Gly-Asp was carried out by using the NCA method. The maximum yield of RGD was about 50% at 0℃ and pH = 9. 5. The prepared RGD tripeptide was confirmed by using amino acid component analysis and mass spectrographic analysis.展开更多
文摘A novel soft chemical approach was developed to synthesize tin oxide-based powders. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning electron microscope and electrochemical methods. The results show that the particles of tin oxide-based materials form an interconnected network structure like mesoporous material. The average size of the particles is about 200 nm. The materials deliver a charge capacity of more than 570 mA·h·g-1. And the capacity loss per cycle is about 0.15% after being cycled for 30 times. The good electrochemical performance indicates that tin oxide-based materials are promising anodes for lithium ion batteries.
基金financially supported by the Basic Theory Research Fund of Research Institute of Metallurgy Engineering,University of Science and Technology Beijing(No.YJ2012-009)
文摘Sm3+-activated Y2028 red phosphors were prepared by the combustion method and microemulsion method at the first time. X-ray characterization and electron diffraction show that, Y202S:Sm3+, Ti4+, Mg2+ samples prepared by these two methods are pure hexagonal crystals in structure with a trivial change due to dopants. Scanning electron microscopy (SEM) results show that the product presents an almond-like sheet in uniform size. Under the excitation of 269 nm ultraviolet light, Y202S:Sm3+ samples fabricated by these two methods exhibit three main groups of red emission lines located at 564, 604, and 656 nm, respectively, which are attributed to the transitions of 4G5/2 →6H5/2, 4G~/2 →6H7/2, 4G5/2 →6H9/2, respectively. The samples prepared by microemulsion are seven times higher in fluorescent emission intensity and half time longer in afterglow time than that prepared by combustion.
文摘In this paper,we report the chemical synthesis of oligonucleotide d-TGGGT using phosphotriester method.The protected pentamer d-MmtTGibGibGibT(=p-ClC6H_4-O(O)P)was deblocked by treatment with concentrated ammonium hydroxide and 80% acetic acid.The pure d-TGGGT obtained by chromatorgraphy on DEAE-Sephadex A-25 and Q-Sepharose FF could be hydrolyzed completely and confirmed by base ratio.
基金financially supported by the National Natural Science Foundation of China Key Program (No. 50332010)the National Natural Science Foundation of China (No. 50172007)
文摘Saturated Ca(OH)2 and AlCl3 solutions were used to synthesize calcium aluminate hydrate precipitates at room temperature; high purity calcium aluminate powders with stable phases were made by calcination of the precursors at a temperature as low as 1100℃. PSD and BET analysis revealed the particles with sizes ranging from submicrometer to several micrometers and with a specific area of 13 m^2/g. The measurement of hydraulic exotherm revealed that the exothennal rate is in peak for about 2 h. The exothermal quantities are 449.24 J/g at 12 h and 488.38 J/g at 24 h. Its strength development is quick and the 1 day curing strength is almost equal to 100% of the 3 days curing strength in the mortar test.
基金supported by the National Natural Science Foundation of China(No.81400680,No.31500723)the National Science Foundation of Tianjin(No.17JCQNJC12800)+1 种基金Tianjin Science and Technology Plan Project(No.14RCGFSY00147)International S&T Cooperation Program of China(No.2015DFG31850)
基金Supported by Shandong Provincial Key Research and Development Program(2019GSF109062)Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2016B12)Major Agricultural Application Technology Innovation Projects of Shan-dong Province。
文摘This article reviews the main chemical synthesis methods of sex pheromone of Asian corn borer, common strategies for constructing dou-ble bond, molecular composition and field application progress of sex pheromone of Asian corn borer, which will provide reference for biological control of Asian corn borer.
基金supported by the National Natural Science Foundation of China(Nos.22071221 and 21905252)Natural Science Foundation of Henan Province(Nos.212300410086,222301420040 and 222300420325).
文摘The rapid progress of modern technologies has accelerated the prominence of thermal expansion mismatch between materials,and tunable thermal expansion materials will be a powerful safeguard against this challenge.Here,isotropic MHfF_(6)(M=Ca,Mn,Fe,and Co)compounds with tunable thermal expansion have been produced via a low-cost synthetic method and investigated.By utilizing temperature dependent X-ray diffraction(XRD)and Raman spectroscopy,combined with first principles calculations,it was revealed that the transverse thermal vibrations of the F atoms are dominated by low-frequency phonons with negative Grüneisen parameters and are therefore the origin of the negative thermal expansion(NTE).Very interestingly,with the increase of the M atomic number,the metal…F atomic linkages become stiffer,reducing the number of vibrational modes with negative Grüneisen parameters,so that the strong NTE can be gradually adjusted to moderate NTE and to near zero thermal expansion.The present study achieves the tunable thermal expansion in a new compound family and shed light on the internal mechanism from the perspective of lattice vibrational dynamics.
基金supported by the National Natural Science Foundation of China(Nos.22227810,22277020,22307061)China Postdoctoral Science Foundation(No.2022M721801)the Beijing Life Science Academy(No.2023000cc0130).
文摘Comprehensive Summary The strategy of removable glycosylation modification was used to overcome the low-efficiency problem encountered in the chemical synthesis of the mirror-image D-version of the immunoglobulin(Ig)-like domain of tropomyosin receptor kinase A(DlgCTrkA),a protein molecule needed for mirror-image screening of D-peptide ligands targeting this cell membrane receptor.It was found that O-linked-β-N-acetyl-D-glucosamine(O-GlcNAc)modification at^(D)Ser^(312),or^(D)Ser^(320)can significantly improve the efficiency of DlgCTrkA synthesis and folding,while O-GlcNAc modification at^(D)Ser^(330)showed barely any improvement.This study provides a new example demonstrating the power of the removable glycosylation modification strategy in the chemical synthesis and folding of difficult-to-obtain proteins.It also presents evidence that removable glycosylation modification at different sites would significantly affect the efficiency of protein folding promoted by this strategy.
基金the Science and Technology Planning Project of Guangdong Province(2016B090934002)Guangdong Provincial Natural Science Foundation(2023A1515011640)for financial support.
文摘Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesizing daidzein was developed in this work.In this article,a two-step synthesis of daidzein(Friedel–Crafts acylation and[5+1]cyclization)was developed via the employment of trifluoromethanesulfonic acid(TfOH)as an effective promoting reagent.The effect of reaction conditions such as solvent,the amount of TfOH,reaction temperature,and reactant ratio on the conversion rate and the yield of the reaction,respectively,was systematically investigated,and daidzein was obtained in 74.0%isolated yield under optimal conditions.Due to the facilitating effect of TfOH,the Friedel–Crafts acylation was completed within 10 min at 90℃ and the[5+1]cyclization was completed within 180 min at 25℃.In addition,a possible reaction mechanism for this process was proposed.The results of the study may provide useful guidance for industrial production of daidzein on a large scale.
基金supported by the National Natural Science Foundation of China(Grants 31971463,31930078)the National Key R&D Program of China(Grant 2021YFD2200402)the Chinese Academy of Forestry(Grant CAFYBB2020ZA001).
文摘Different chemical compositions of soil organic carbon(SOC)affect its persistence and whether it signifi-cantly differs between natural forests and plantations remains unclear.By synthesizing 234 observations of SOC chemical compositions,we evaluated global patterns of concentra-tion,individual chemical composition(alkyl C,O-alkyl C,aromatic C,and carbonyl C),and their distribution even-ness.Our results indicate a notably higher SOC,a markedly larger proportion of recalcitrant alkyl C,and lower easily decomposed carbonyl C proportion in natural forests.How-ever,SOC chemical compositions were appreciably more evenly distributed in plantations.Based on the assumed con-ceptual index of SOC chemical composition evenness,we deduced that,compared to natural forests,plantations may have higher possible resistance to SOC decomposition under disturbances.In tropical regions,SOC levels,recalcitrant SOC chemical composition,and their distributed evenness were significantly higher in natural forests,indicating that SOC has higher chemical stability and possible resistance to decomposition.Climate factors had minor effects on alkyl C in forests globally,while they notably affected SOC chemi-cal composition in tropical forests.This could contribute to the differences in chemical compositions and their distrib-uted evenness between plantations and natural stands.
文摘Research on the synthesis of superoxide dismutase mimics by chemical and biologi-cal synthetic methods were reviewed.The advantages and limitations were analyzed.A prospect for the future development of superoxide dismutase mimics is proposed.
基金supported by the National Natural Science Foundation of China (21572043, 21473176)the Ministry of Science and Technology (2016YFA0400900, 2015CB910103)the Fundamental Research Funds for the Central Universities (PA2017GDQT0021)
文摘Snake toxin Calciseptine as a natural antagonist of L-type calcium channel has potential drug values, but its structural information remains unknown. Here, we report the total chemical synthesis of Calciseptine by using hydrazide based native chemical ligation. The crystal structure of Calciseptine was determined by racemic protein crystallography technique. Compared to the structure of its homologous family protein, we found that Calciseptine is adopting a typical three-finger structure.
基金Project(51102015)supported by the National Natural Science Foundation of China
文摘Thermodynamics for chemical vapor synthesis (CVS) of Nb nanopowder in NbCl5-H2-Ar system was investigated by using FactSage software. The validation experiments were conducted to confirm the thermodynamics points. The results indicate that under the atmospheric pressure, the reduction approach from NbCl5(g) to Nb(s) is a stage-wise process with the formation of complex sub-chlorides, and is controllable at low hydrogen ratio (mole ratio of n(NbCl5):n(H2)<1:180) and low temperature (<1050 °C). Furthermore, a reasonable amount of inert loading gas is favorable to increase the reduction ratio of NbCl5 and the powder yield. The as-synthesized Nb nanopowder with the homogeneous size of 30-50 nm and the powder yield of 85% (mass fraction) is obtained by the CVS process under n(NbCl5):n(H2):n(Ar)=1:120:1 and 950 °C with the NbCl5 reduction rate of 96.1%.
文摘Subject Code:C06 With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Dai Junbiao(戴俊彪)from Tsinghua University reported the complete chemical synthesis of the yeast chromosome XII,which was published in Science(2017,355:1049—1055).To understand the origin of life,scientists have long been challenged whether an artificial living
基金Project supported by the International Cooperation of Science and Technology Ministry PRC (2005DFBA028)the National Natural Science Foundation of China (59925412)
文摘Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 powders doped with different yttrium contents were successfully synthesized using a chemical precipitation method, under an alkalescent condition. Properties of the obtained samples were characterized and analyzed with X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX), transmission electron microscopy (TEM), infrared (IR) absorbance, and the BET method. For the prepared samples with 20% (molar ratio) Y-doped content, a BET specific surface area of 106. 6 m^2 · g^- 1, with an average pore size of3~27 nm were obtained. XRD patterns showed that the doped samples were with a cubic fluorite structure. TEM micrographs revealed that the doped samples showed a spherical morphology with a diameter ranging from 20 to 30 nm and a round pore shape. IR results indicated that the Ce-O-Ce vibration intensity decreased as the Y-doped content increased. N2 adsorption-desorption isotherms showed that the samples possessed typical mesopore characteristics. The average pore size of the samples decreased alter mesoporous CeO2 was doped with yttrium, and the average pore size decreased largely as the Y-doped content increased.
文摘Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO-A1203-SiO2 and CaO--MgO-SiO2 systems, and their bending strengths up to 53.47 MPa and 99.84 MPa, respectively, were obtained. The presence of anorthite, a-quartz, magnetite, and pyroxene crystals (augite and diopside) in the steel slag ceramics were very different from the composition of traditional ceramics. X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA) results illustrated that the addition of steel slag reduced the temperature of extensive liquid generation and further decreased the firing temperature. The considerable contents of glass-modifying oxide liquids with rather low viscosities at high temperature in the steel slag ceramic adobes promoted element diffusion and crystallization. The results of this study demonstrated a new approach for extensive and effective recycling of steel slag.
基金supported by National Natural Science Foundation of China (No. 21778001)
文摘Recently, medicinal peptide molecules are of great interest to many international pharmaceutical companies, mainly because of their relatively lower research costs, shorter research cycles, and the greater likelihood of being drugs, when compared with traditional small molecules. Due to the great variety in molecule structures and the diverse biological functions, disulfide-rich peptide toxins have become a shining molecular library for the development of polypeptide drugs. In view of the increasing amount of related publications, here we summarize the discovery, structural elucidation and chemical synthesis of disulfide-rich peptide toxins and their analogs.
文摘We used a chemical reduction method to synthesize the catalysts of cobalt(Co) and cobalt-ruthenium(Co-Ru) bifunctional supported on carbon nanotubes(CNTs) for Fischer–Tropsch synthesis(FTS) in a fixedbed reactor. These Co-Ru/CNTs catalysts were synthesized with various weight proportions of Ru/Co(0.1 to 0.4 wt%) with keeping a fixed amount of cobalt(10 wt%). Moreover, for comparison purpose, CNTs supported Co-and Co(Ru)-based catalysts at same loading as the above catalysts were prepared through impregnation method. We characterize the present catalysts through the various techniques such as Energy–dispersive X-ray(EDX), Transmission Electron Microscopy(TEM), Brunauer–Emmett–Teller(BET),Hydrogen-Temperature-Programmed Reduction(H_2-TPR), Hydrogen-Temperature-Programmed Desorption(H_2-TPD) and O_2 titration. Thus using the chemical reduction method, a narrow particle size distribution was obtained so that the small cobalt particles were confined inside the CNTs. The Co-based catalyst prepared by impregnation was compared with the Co-Ru catalysts at the same loading. The results demonstrated that the use of chemical reduction method led to decrease the average Co oxide cluster size to8.7 nm so that the reduction enhanced about 24% and stabilized an earlier time at the stream. Among the prepared catalysts, the results indicated that the Co-Ru/CNTs catalysts demonstrated high catalytic activity with the highest long-chain hydrocarbons(C_(5+)), selectivity up to 74.76%, which was higher than those we obtained by the Co-Ru/γ-Al_2O_3(61._20%), Co/CNTs(43.68%) and Co/γ-Al_2O_3(37.69%). At the same time, comparing with those catalyst synthesized by impregnation, the use of chemical reduction led to enhancement of the C_(5+) selectivity from 59.30% to 68.83% and increment in FTS rate about 11% for the Co-Ru/CNTs catalyst.
基金This project is financially supported by the National Natural Science Foundation of China (No. 50304014) and the Postgraduate Educational Innovation Engineering of Central South University (No. 030702).
文摘ZrO_2-SnO_2 composite nanoparticles were prepared by heating the hydrateprecursors synthesized by the chemical co-precipitation reaction of ZrOCl_2 and SnCl_4. Theprecursors were examined by differential thermal analysis (DTA) and thermogravimetric analysis(TGA). The composite powder was characterized using X-ray diffraction (XRD), transmission electronmicroscopy (TEM) and desorption isotherm (Barrett-Joyner-Halenda method). The average crystal sizeof the nanoparticle ranges from 15 to 30 nm for the sample containing 5%-25% ZrO_2 (mass fraction).Most of the pores in the ZrO_2-SnO_2 nanoparticles are about 10-20 nm in diameter. The compositepowder is promising for chemical sensors.
基金Supported by the Special Research Grant from the State Administration of Traditional Chinese Medicine of China( No.2004ZDZX003).
文摘The cell adhesive motif RGD tripeptide was synthesized by using a novel chemical method. First, Gly-Asp(GD) was synthesized in two steps including the chloroacetylation of free L-aspartic acid and the ammonolysis of the chloroacetylated L-aspartic acid. The yield of chloroacetylated L-aspartic acid was 83.0%. For the ammonolysis of chloroacetylated L-aspartic acid, the yield of the ammonolyzed product was 92. 3%. Second, the coupling between Arg and Gly-Asp was carried out by using the NCA method. The maximum yield of RGD was about 50% at 0℃ and pH = 9. 5. The prepared RGD tripeptide was confirmed by using amino acid component analysis and mass spectrographic analysis.