By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at t...By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at the eigenfrequencies of the corresponding interior problems is proposed. By adding appropriate damp to the virtual source system of the wave superposition method, the unique solutions for all wave numbers can be ensured. Based on this thought, a novel method-wave superposition method with complex radius vector is constructed. Not only is the computational time of this method approximately equal to that of the standard wave superposition method, but also the accuracy is much higher compared with other correlative methods. Finally, by taking the pulsating sphere and oscillating sphere as examples, the results of calculation show that the present method can effectively overcome the non-uniqueness problem.展开更多
This paper discusses the calculation of plastic zone properties around circular tunnels to rock-masses that satisfy the Hoek–Brown failure criterion in non-hydrostatic condition,and reviews the calculation of plastic...This paper discusses the calculation of plastic zone properties around circular tunnels to rock-masses that satisfy the Hoek–Brown failure criterion in non-hydrostatic condition,and reviews the calculation of plastic zone and displacement,and the basis of the convergence–confinement method in hydrostatic condition.A two-dimensional numerical simulation model was developed to gain understanding of the plastic zone shape.Plastic zone radius in any angles around the tunnel is analyzed and measured,using different values of overburden(four states)and stress ratio(nine states).Plastic zone radius equations were obtained from fitting curve to data which are dependent on the values of stress ratio,angle and plastic zone radius in hydrostatic condition.Finally validation of this equation indicate that results predict the real plastic zone radius appropriately.展开更多
Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditiona...Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV) was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU). The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with ki- nematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA) test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10172038).
文摘By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at the eigenfrequencies of the corresponding interior problems is proposed. By adding appropriate damp to the virtual source system of the wave superposition method, the unique solutions for all wave numbers can be ensured. Based on this thought, a novel method-wave superposition method with complex radius vector is constructed. Not only is the computational time of this method approximately equal to that of the standard wave superposition method, but also the accuracy is much higher compared with other correlative methods. Finally, by taking the pulsating sphere and oscillating sphere as examples, the results of calculation show that the present method can effectively overcome the non-uniqueness problem.
文摘This paper discusses the calculation of plastic zone properties around circular tunnels to rock-masses that satisfy the Hoek–Brown failure criterion in non-hydrostatic condition,and reviews the calculation of plastic zone and displacement,and the basis of the convergence–confinement method in hydrostatic condition.A two-dimensional numerical simulation model was developed to gain understanding of the plastic zone shape.Plastic zone radius in any angles around the tunnel is analyzed and measured,using different values of overburden(four states)and stress ratio(nine states).Plastic zone radius equations were obtained from fitting curve to data which are dependent on the values of stress ratio,angle and plastic zone radius in hydrostatic condition.Finally validation of this equation indicate that results predict the real plastic zone radius appropriately.
文摘Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV) was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU). The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with ki- nematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA) test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.