The influences of the lateral motion of a single wheelset running on a tangent railway on the creepages and creep forces between wheel and rail are investigated with numerical methods. ...The influences of the lateral motion of a single wheelset running on a tangent railway on the creepages and creep forces between wheel and rail are investigated with numerical methods. The effect of the yaw motion of wheelset is neglected in the analysis, and Kalker’s theory of three dimensional elastic bodies in rolling contact is employed to analyze the creep forces in the wheel/rail rolling contact with Non Hertzian form.展开更多
For rail rolling by universal mill, a simplified three-dimensional theoretical model was built firstly. The kinematically admissible velocity field of the web, head, and base of rail was determined respectively; moreo...For rail rolling by universal mill, a simplified three-dimensional theoretical model was built firstly. The kinematically admissible velocity field of the web, head, and base of rail was determined respectively; moreover, the corresponding strain rate field and the strength of shear strain rate were obtained. Then, the plastic deformation power of corresponding deformation zone, the power consumed on the velocity discontinuity surface, and the power generated by backward slip and forward slip were proposed. According to the upper-bound method, the roiling force of horizontal roll and two vertical rolls could be obtained. For verifying the theoretical model, the universal rolling experiments of 18 kg/m light rail was accomplished in Yanshan University Rolling Laboratory, and the experimental data of 60 kg/m heavy rail universal rolling were obtained from the Anshan Iron and Steel Group Corporation. Compared with the experimental data, the theoretical results of rolling force for 18 kg/m light rail and 60 kg/m heavy rail universal rolling were somewhat greater than experimental data, but in general did not exceed them by 15%. Thus, the simplified model was reliable and feasible for presetting and optimizing the parameters of rolling technology according to the upper-bound method.展开更多
The Beijing-Shanghai railway, linking the two biggest cities in China, is the busiest railway in the world, having an annual cargo capacity of 120 million tons and transporting 30 million passengers. Connecting two ec...The Beijing-Shanghai railway, linking the two biggest cities in China, is the busiest railway in the world, having an annual cargo capacity of 120 million tons and transporting 30 million passengers. Connecting two economically developed regions-the Yangtze Delta and Circum-Bohai (sea) area-the railway展开更多
文摘The influences of the lateral motion of a single wheelset running on a tangent railway on the creepages and creep forces between wheel and rail are investigated with numerical methods. The effect of the yaw motion of wheelset is neglected in the analysis, and Kalker’s theory of three dimensional elastic bodies in rolling contact is employed to analyze the creep forces in the wheel/rail rolling contact with Non Hertzian form.
基金Item Sponsored by National Natural Science Foundation of China (50775196)Provincial Natural Science Foundation of Hebei Province of China(08B017)
文摘For rail rolling by universal mill, a simplified three-dimensional theoretical model was built firstly. The kinematically admissible velocity field of the web, head, and base of rail was determined respectively; moreover, the corresponding strain rate field and the strength of shear strain rate were obtained. Then, the plastic deformation power of corresponding deformation zone, the power consumed on the velocity discontinuity surface, and the power generated by backward slip and forward slip were proposed. According to the upper-bound method, the roiling force of horizontal roll and two vertical rolls could be obtained. For verifying the theoretical model, the universal rolling experiments of 18 kg/m light rail was accomplished in Yanshan University Rolling Laboratory, and the experimental data of 60 kg/m heavy rail universal rolling were obtained from the Anshan Iron and Steel Group Corporation. Compared with the experimental data, the theoretical results of rolling force for 18 kg/m light rail and 60 kg/m heavy rail universal rolling were somewhat greater than experimental data, but in general did not exceed them by 15%. Thus, the simplified model was reliable and feasible for presetting and optimizing the parameters of rolling technology according to the upper-bound method.
文摘The Beijing-Shanghai railway, linking the two biggest cities in China, is the busiest railway in the world, having an annual cargo capacity of 120 million tons and transporting 30 million passengers. Connecting two economically developed regions-the Yangtze Delta and Circum-Bohai (sea) area-the railway