Based on the vehicle track coupling dynamics theory, a new spatial dynamic numerical model of vehicle track subgrade coupling system was established considering the interaction among different structural layers in the...Based on the vehicle track coupling dynamics theory, a new spatial dynamic numerical model of vehicle track subgrade coupling system was established considering the interaction among different structural layers in the subgrade system. The dynamic responses of the coupled system were analyzed when the speed of train was 350 km/h and the transition was filled with graded broken stones mixed with 5% cement. The results indicate that the setting form of bridge-approach embankment section has little effect on the dynamic responses, thus designers can choose it on account of the practical circumstances. Because the location about 5 m from the bridge abutment has the greatest deformation, the stiffness within 0 5 m zone behind the abutment should be specially designed. The results of the study from vehicle track dynamics show that the maximum allowable track deflection angle should be 0.09% and the coefficient of subgrade reaction(K30) is greater than 190 MPa within the 0 5 m zone behind the abutment and greater than 150 MPa in other zones.展开更多
This paper studies the short-term prediction methods of sectional passenger flow, and selects BP neural network combined with the characteristics of sectional passenger flow itself. With a case study, we design three ...This paper studies the short-term prediction methods of sectional passenger flow, and selects BP neural network combined with the characteristics of sectional passenger flow itself. With a case study, we design three different schemes. We use Matlab to realize the prediction of the sectional passenger flow of the Beijing subway Line 2 and make comparative analysis. The empirical research shows that combining data characteristics of sectional passenger flow with the BP neural network have good prediction accuracy.展开更多
In order to analyze the characteristics of wheel-rail vibration of the vertical section in a high-speed railway, a vehicle-line dynamics model is established using the dynamics software SIMPACK. Through this model, th...In order to analyze the characteristics of wheel-rail vibration of the vertical section in a high-speed railway, a vehicle-line dynamics model is established using the dynamics software SIMPACK. Through this model, the paper analyzes the influence of vertical section parameters, including vertical section slope and vertical curve radius, on wheel-rail dynamics interaction and the acting region of wheel-rail vibration. In addition, the characteristics of wheel- rail vibration of the vertical section under different velocities are investigated. The results show that the variation of wheel load is not sensitive to the vertical section slope but is greatly affected by the vertical curve radius. It was also observed that the smaller the vertical curve radius is, the more severe the interaction between the wheel and rail be- comes. Furthermore, the acting region of wheel-rail vibration expands with the vertical curve radius increasing. On another note, it is necessary to match the slope and vertical curve radius reasonably, on account of the influence of operation speed on the characteristics of wheel-rail vibration. This is especially important at the design stage of vertical sec- tions for lines of different grades.展开更多
基金Project(41030742) supported by the National Natural Science Foundation of ChinaProject(2009G010-c) supported by the Technological Research and Development Programs of the Ministry of Railways,China
文摘Based on the vehicle track coupling dynamics theory, a new spatial dynamic numerical model of vehicle track subgrade coupling system was established considering the interaction among different structural layers in the subgrade system. The dynamic responses of the coupled system were analyzed when the speed of train was 350 km/h and the transition was filled with graded broken stones mixed with 5% cement. The results indicate that the setting form of bridge-approach embankment section has little effect on the dynamic responses, thus designers can choose it on account of the practical circumstances. Because the location about 5 m from the bridge abutment has the greatest deformation, the stiffness within 0 5 m zone behind the abutment should be specially designed. The results of the study from vehicle track dynamics show that the maximum allowable track deflection angle should be 0.09% and the coefficient of subgrade reaction(K30) is greater than 190 MPa within the 0 5 m zone behind the abutment and greater than 150 MPa in other zones.
文摘This paper studies the short-term prediction methods of sectional passenger flow, and selects BP neural network combined with the characteristics of sectional passenger flow itself. With a case study, we design three different schemes. We use Matlab to realize the prediction of the sectional passenger flow of the Beijing subway Line 2 and make comparative analysis. The empirical research shows that combining data characteristics of sectional passenger flow with the BP neural network have good prediction accuracy.
基金support and motivation provided by the National Natural Science Foundation of China (No. 51075340)the Fok YingTong Education Foundation for Young Teachers in the Higher Education Institutions of China (No. 121075)the Program for Innovation Research Team in University in China (No. IRT1178)
文摘In order to analyze the characteristics of wheel-rail vibration of the vertical section in a high-speed railway, a vehicle-line dynamics model is established using the dynamics software SIMPACK. Through this model, the paper analyzes the influence of vertical section parameters, including vertical section slope and vertical curve radius, on wheel-rail dynamics interaction and the acting region of wheel-rail vibration. In addition, the characteristics of wheel- rail vibration of the vertical section under different velocities are investigated. The results show that the variation of wheel load is not sensitive to the vertical section slope but is greatly affected by the vertical curve radius. It was also observed that the smaller the vertical curve radius is, the more severe the interaction between the wheel and rail be- comes. Furthermore, the acting region of wheel-rail vibration expands with the vertical curve radius increasing. On another note, it is necessary to match the slope and vertical curve radius reasonably, on account of the influence of operation speed on the characteristics of wheel-rail vibration. This is especially important at the design stage of vertical sec- tions for lines of different grades.