为解决钢轨温度力监测设备体积大、现场传感器安装和线缆防护施工作业工作量大、信号线缆影响养护维修等问题,提出了基于LoRa(Long Range Radio)的低功耗弦振式钢轨温度力监测技术方案,改进了数据采集设备的安装位置和方式,设计了数据...为解决钢轨温度力监测设备体积大、现场传感器安装和线缆防护施工作业工作量大、信号线缆影响养护维修等问题,提出了基于LoRa(Long Range Radio)的低功耗弦振式钢轨温度力监测技术方案,改进了数据采集设备的安装位置和方式,设计了数据采集模块,实现了钢轨温度力自动监测。数据采集模块以低功耗单片机为控制核心,针对振弦模组、LoRa模组和锂亚硫酰氯电池进行了硬件设计,配合特殊的通信策略和机制,实现了系统的低功耗。试验结果表明:在精度试验中,温度力实测值与模拟值最大相差13 kN,精度达到2.2%;在-20~70℃的高低温试验中,数据采集模块工作正常,温度测量值与实际设定值最大相差0.4℃,钢轨温度力测量最大误差为7.4 kN。监测系统的环境适应性、精度和续航时间均满足铁路现场应用要求。展开更多
文摘为解决钢轨温度力监测设备体积大、现场传感器安装和线缆防护施工作业工作量大、信号线缆影响养护维修等问题,提出了基于LoRa(Long Range Radio)的低功耗弦振式钢轨温度力监测技术方案,改进了数据采集设备的安装位置和方式,设计了数据采集模块,实现了钢轨温度力自动监测。数据采集模块以低功耗单片机为控制核心,针对振弦模组、LoRa模组和锂亚硫酰氯电池进行了硬件设计,配合特殊的通信策略和机制,实现了系统的低功耗。试验结果表明:在精度试验中,温度力实测值与模拟值最大相差13 kN,精度达到2.2%;在-20~70℃的高低温试验中,数据采集模块工作正常,温度测量值与实际设定值最大相差0.4℃,钢轨温度力测量最大误差为7.4 kN。监测系统的环境适应性、精度和续航时间均满足铁路现场应用要求。