Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban tran...Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban transportation carbon emission reduction.Since the whole life cycle of urban rail transit carbon emission measurement involves a wide range of aspects,a systematic framework model is required for analysis.This research reviews the existing studies on carbon emission of urban rail transit.First,the characteristics of urban rail transit carbon emission were determined and the complexity of carbon emission measurement was analyzed.Then,the urban rail transit carbon emission measurement models were compared and analyzed in terms of the selection of research boundaries,the types of greenhouse gas(GHG)emissions calculation,and the accuracy of the measurement.Following that,an intelligent station was introduced to analyze the practical application of digital collaboration technology and energy-saving and carbon-reducing system platforms for rail transit.Finally,the urgent problems and future research directions at this stage were discussed.This research presents the necessity of establishing a dynamic carbon emission factor library and the important development trend of system integration of carbon emission measurement and digital system technology.展开更多
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med...Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.展开更多
Currently,the manual contact rail measurement that was basically adopted in China has low detection efficiency,poor accuracy and poor stability.In order to improve the function of the system,we propose a non-contact m...Currently,the manual contact rail measurement that was basically adopted in China has low detection efficiency,poor accuracy and poor stability.In order to improve the function of the system,we propose a non-contact measurement method based on the flatness and verticality ruler model.The flatness measurement model was built by employing the string measurement method.In addition,the verticality measurement model was built by the dihedral method to measure the rail comprehensively.By extracting curvature information of feature points,in this system,each laser sensor is used to collect rail profile curves.A large number of three-dimensional point clouds data are generated by the unit quaternion method of coordinate transformation,and the contour curves of the characteristic points of the four laser sensors are matched with the corresponding point sets one to one,and the rail contour splicing is finally completed.The experimental results show that this method has better measurement effect compared with the traditional manual measurement method.展开更多
Rail irregularities, in particular for urban rail- way infrastructures, are one of the main causes for the generation of noise and vibrations. In addition, repetitive loading may also lead to decay of the structural e...Rail irregularities, in particular for urban rail- way infrastructures, are one of the main causes for the generation of noise and vibrations. In addition, repetitive loading may also lead to decay of the structural elements of the rolling stock. This further causes an increase in main- tenance costs and reduction of service life. Monitoring these defects on a periodic basis enables the network rail managers to apply proactive measures to limit further damage. This paper discusses the measurement methods for rail corrugation with particular regard to the analysis tools for evaluating the thresholds of acceptability in re- lation to the tramway Italian transport system. Further- more, a method of analysis has been proposed: an application of the methodology used for treating road profiles has been also utilized for the data processing of rail profilometric data.展开更多
Purpose–This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.Design/methodology/approach–Chinese wagons’exis...Purpose–This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.Design/methodology/approach–Chinese wagons’existing maintenance strategy had left a certain safety margin for the characteristics of widely running range,unstable service environment and submission to transportation organization requirements.To reduce maintenance costs,China railway(CR)has attempted to extend the maintenance interval since 2020.The maintenance cycle of C80 series heavy haul wagons is extended by three months(no stable routing)or 50,000 km(regular routing).However,in the meantime,the alarming rate of the running state,a key index to reflect the severe degree of hunting stability,by the train performance detection system(TPDS)for the C80 series heavy haul wagons has increased significantly.Findings–The present paper addresses a big data statistical way to evaluate the risk of allowing the C80 series heavy haul wagons to remain in operation longer than stipulated by the maintenance interval initial set.Through the maintenance and wayside-detectordata,whichis divided intothreestages,the extension period(three months),the current maintenance period and the previous maintenance period,this method reveals the alarming rate of hunting was correlated with maintenance interval.The maintainability of wagons will be achieved by utilizing wagon performance degradation modeling with the state of the wheelset and the often-contact side bearing.This paper also proposes a statistical model to return to the average safety level of the previous maintenance period’s baseline through correct alarming thresholds for unplanned corrective maintenance.Originality/value–The paper proposes an approach to reduce safety risk due to maintenance interval extension by effective maintenance program.The results are expected to help the railway company make the optimal solution to balance safety and the economy.展开更多
The cause and treatment of rail corrugation for the metro have always been a popular and challenging issue. In this work, the field measurements were carried out on rail corrugation, track stiffness, and the track dyn...The cause and treatment of rail corrugation for the metro have always been a popular and challenging issue. In this work, the field measurements were carried out on rail corrugation, track stiffness, and the track dynamic response. A three-dimensional finite element model was developed to investigate the cause of rail corrugation. The constraints on rail vibration from two wheelsets and adjacent wheel-rail interactions were taken into account in the model. According to experimental and simulation results, the suppression measure for rail corrugation was proposed and the suppression mechanism was discussed. It was found that the cause of rail corrugation is related to vertical and lateral vibration of the rails outside the two wheelsets at around 380 Hz. The increased stiffness of the fasteners reduces the vibration energy of the rail and the wheel-rail force. However, simply increasing the stiffness of the fasteners may not be effective in the suppression of rail corrugation. If necessary, the rails need to be grinded to reduce the roughness to a certain level, so that increasing the fastener stiffness can effectively suppress the rail corrugation.展开更多
The deterioration of the sleeper support on the ballasted track begins with the accumulation of sleeper voids.The increased dynamic loading in the voided zone and the ballast contact conditions cause the accelerated g...The deterioration of the sleeper support on the ballasted track begins with the accumulation of sleeper voids.The increased dynamic loading in the voided zone and the ballast contact conditions cause the accelerated growth of the settlements in the voided zones,which results in the appearance of local instabilities like ballast breakdown,white spots,subgrade defects,etc.The recent detection and quantification of the sleeper voids with track-side and onboard monitoring can help to avoid or delay the development of local instabilities.The present paper is devoted to the study of the dynamic behavior of railway track with sleeper voids in the ballast breakdown zone.The result of the experimental track-side measurements of rail acceleration and deflection is presented.The analysis shows the existence of the dynamic impact during wheel entry in the voided zone.However,the measured dynamic impact is subjected to the bias of the track-side measurement method.Both the mechanism of the impact and the measurement aspects are explained by using the one-beam model on viscoelastic foundation.The void features in the dynamic behavior are analyzed for the purpose of track-side and onboard monitoring.A practical method of the void parameter quantification is proposed.展开更多
基金supported by Beijing Natural Science Foundation(J210001)Natural Science Foundation of Hebei Province(E2021210142)Tianjin Natural Science Foundation(21JCZXJC00160).
文摘Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban transportation carbon emission reduction.Since the whole life cycle of urban rail transit carbon emission measurement involves a wide range of aspects,a systematic framework model is required for analysis.This research reviews the existing studies on carbon emission of urban rail transit.First,the characteristics of urban rail transit carbon emission were determined and the complexity of carbon emission measurement was analyzed.Then,the urban rail transit carbon emission measurement models were compared and analyzed in terms of the selection of research boundaries,the types of greenhouse gas(GHG)emissions calculation,and the accuracy of the measurement.Following that,an intelligent station was introduced to analyze the practical application of digital collaboration technology and energy-saving and carbon-reducing system platforms for rail transit.Finally,the urgent problems and future research directions at this stage were discussed.This research presents the necessity of establishing a dynamic carbon emission factor library and the important development trend of system integration of carbon emission measurement and digital system technology.
基金Supported by National Natural Science Foundation of China(Grant Nos.U2268210,52302474,52072249).
文摘Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.
基金Supported by the National Natural Science Foundation of China(U1831133)Shanghai Natural Science Foundation(17ZR1443500)Baoshan Science and Technology Innovation Special Fund(17-C-21)。
文摘Currently,the manual contact rail measurement that was basically adopted in China has low detection efficiency,poor accuracy and poor stability.In order to improve the function of the system,we propose a non-contact measurement method based on the flatness and verticality ruler model.The flatness measurement model was built by employing the string measurement method.In addition,the verticality measurement model was built by the dihedral method to measure the rail comprehensively.By extracting curvature information of feature points,in this system,each laser sensor is used to collect rail profile curves.A large number of three-dimensional point clouds data are generated by the unit quaternion method of coordinate transformation,and the contour curves of the characteristic points of the four laser sensors are matched with the corresponding point sets one to one,and the rail contour splicing is finally completed.The experimental results show that this method has better measurement effect compared with the traditional manual measurement method.
文摘Rail irregularities, in particular for urban rail- way infrastructures, are one of the main causes for the generation of noise and vibrations. In addition, repetitive loading may also lead to decay of the structural elements of the rolling stock. This further causes an increase in main- tenance costs and reduction of service life. Monitoring these defects on a periodic basis enables the network rail managers to apply proactive measures to limit further damage. This paper discusses the measurement methods for rail corrugation with particular regard to the analysis tools for evaluating the thresholds of acceptability in re- lation to the tramway Italian transport system. Further- more, a method of analysis has been proposed: an application of the methodology used for treating road profiles has been also utilized for the data processing of rail profilometric data.
文摘Purpose–This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.Design/methodology/approach–Chinese wagons’existing maintenance strategy had left a certain safety margin for the characteristics of widely running range,unstable service environment and submission to transportation organization requirements.To reduce maintenance costs,China railway(CR)has attempted to extend the maintenance interval since 2020.The maintenance cycle of C80 series heavy haul wagons is extended by three months(no stable routing)or 50,000 km(regular routing).However,in the meantime,the alarming rate of the running state,a key index to reflect the severe degree of hunting stability,by the train performance detection system(TPDS)for the C80 series heavy haul wagons has increased significantly.Findings–The present paper addresses a big data statistical way to evaluate the risk of allowing the C80 series heavy haul wagons to remain in operation longer than stipulated by the maintenance interval initial set.Through the maintenance and wayside-detectordata,whichis divided intothreestages,the extension period(three months),the current maintenance period and the previous maintenance period,this method reveals the alarming rate of hunting was correlated with maintenance interval.The maintainability of wagons will be achieved by utilizing wagon performance degradation modeling with the state of the wheelset and the often-contact side bearing.This paper also proposes a statistical model to return to the average safety level of the previous maintenance period’s baseline through correct alarming thresholds for unplanned corrective maintenance.Originality/value–The paper proposes an approach to reduce safety risk due to maintenance interval extension by effective maintenance program.The results are expected to help the railway company make the optimal solution to balance safety and the economy.
基金Project(52178405) supported by the National Natural Science Foundation of ChinaProject(Z191100002519010) supported by the Project of Beijing Municipal Science&Technology Plan,ChinaProjects(2018JBZ003, 2020JBZD013) supported by the Fundamental Research Funds for the Central Universities,China。
文摘The cause and treatment of rail corrugation for the metro have always been a popular and challenging issue. In this work, the field measurements were carried out on rail corrugation, track stiffness, and the track dynamic response. A three-dimensional finite element model was developed to investigate the cause of rail corrugation. The constraints on rail vibration from two wheelsets and adjacent wheel-rail interactions were taken into account in the model. According to experimental and simulation results, the suppression measure for rail corrugation was proposed and the suppression mechanism was discussed. It was found that the cause of rail corrugation is related to vertical and lateral vibration of the rails outside the two wheelsets at around 380 Hz. The increased stiffness of the fasteners reduces the vibration energy of the rail and the wheel-rail force. However, simply increasing the stiffness of the fasteners may not be effective in the suppression of rail corrugation. If necessary, the rails need to be grinded to reduce the roughness to a certain level, so that increasing the fastener stiffness can effectively suppress the rail corrugation.
基金The authors acknowledge the support of Swiss Federal Railways with the experimental measurements.
文摘The deterioration of the sleeper support on the ballasted track begins with the accumulation of sleeper voids.The increased dynamic loading in the voided zone and the ballast contact conditions cause the accelerated growth of the settlements in the voided zones,which results in the appearance of local instabilities like ballast breakdown,white spots,subgrade defects,etc.The recent detection and quantification of the sleeper voids with track-side and onboard monitoring can help to avoid or delay the development of local instabilities.The present paper is devoted to the study of the dynamic behavior of railway track with sleeper voids in the ballast breakdown zone.The result of the experimental track-side measurements of rail acceleration and deflection is presented.The analysis shows the existence of the dynamic impact during wheel entry in the voided zone.However,the measured dynamic impact is subjected to the bias of the track-side measurement method.Both the mechanism of the impact and the measurement aspects are explained by using the one-beam model on viscoelastic foundation.The void features in the dynamic behavior are analyzed for the purpose of track-side and onboard monitoring.A practical method of the void parameter quantification is proposed.