期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Energy harvester array using piezoelectric circular diaphragm for rail vibration 被引量:4
1
作者 Wei Wang Rong-Jin Huang +1 位作者 Chuan-Jun Huang Lai-Feng Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期884-888,共5页
Generating electric energy from mechanical vibration using a piezoelectric circular membrane array is presented in this paper.The electrical characteristics of the functional array consisted of three plates with varie... Generating electric energy from mechanical vibration using a piezoelectric circular membrane array is presented in this paper.The electrical characteristics of the functional array consisted of three plates with varies tip masses are examined under dynamic conditions.With an optimal load resistor of 11 k,an output power of 21.4 m W was generated from the array in parallel connection at 150 Hz under a pre-stress of 0.8 N and a vibration acceleration of9.8 m/s2.Moreover,the broadband energy harvesting using this array still can be realized with different tip masses.Three obvious output power peaks can be obtained in a frequency spectra of 110 Hz to 260 Hz.The results show that using a piezoelectric circular diaphragm array can increase significantly the output of energy compared with the use of a single plate.And by optimizing combination of tip masses with piezoelectric elements in array,the frequency range can be tuned to meet the broadband vibration.This array may possibly be exploited to design the energy harvesting for practical applications such as future high speed rail. 展开更多
关键词 Energy harvesting ARRAY Piezoelectric material rail vibration
下载PDF
A critical review of wheel/rail high frequency vibration-induced vibration fatigue of railway bogie in China
2
作者 Xingwen Wu Zhenxian Zhang +7 位作者 Wubin Cai Ningrui Yang Xuesong Jin Ping Wang Zefeng Wen Maoru Chi Shuling Liang Yunhua Huang 《Railway Sciences》 2024年第2期177-215,共39页
Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the ... Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators.Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration.This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration,including a brief introduction of short-pitch irregularities,associated high frequency vibration in railway bogie,typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.Findings–The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms.The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components.The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure,and the fatigue crack usually initiates from the defect of the weld seam.Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities.The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment,and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.Originality/value–The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration. 展开更多
关键词 Wheel/rail high frequency vibration vibration fatigue railway bogie Fatigue damage assessment
下载PDF
A frequency and velocity-dependent impedance method for prediction of rail/foundation dynamics
3
作者 Reda Mezeh Marwan Sadek +1 位作者 Fadi Hage Chehade Isam Shahrour 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第1期101-111,共11页
This paper presents an efficient numerical tool for the prediction of railway dynamic response.A behavior calibration of the infinite Euler-Bernoulli beam resting on continuous viscoelastic foundation is proposed.Cons... This paper presents an efficient numerical tool for the prediction of railway dynamic response.A behavior calibration of the infinite Euler-Bernoulli beam resting on continuous viscoelastic foundation is proposed.Constitutive laws of the discrete elements are determined for a rectilinear ballasted track.A three-dimensional model coupled with an adaptive meshing scheme is employed to calibrate the beam model impedances by finding the similarity between the output signals using the genetic algorithm.The model shows an important performance with significant reduction in computational effort.This study emphasizes the major impact of the excitation characteristics on the parameters of the discrete models. 展开更多
关键词 moving loads rail vibrations rail/foundation interaction dynamic impedances genetic algorithm
下载PDF
Dynamic Characteristics of Metro Vehicle under Thermal Deformation of Long-Span Cable-Stayed Bridge
4
作者 Quanming Long Qianhua Pu +2 位作者 Wenhao Zhou Li Zhu Zhaowei Chen 《World Journal of Engineering and Technology》 2022年第3期656-677,共22页
In order to study the influence of thermal deformation of long-span cable- stayed bridge (LSCSB) on the dynamic characteristics of metro vehicle on the bridge, based on the theory of vehicle-track coupled dynamic... In order to study the influence of thermal deformation of long-span cable- stayed bridge (LSCSB) on the dynamic characteristics of metro vehicle on the bridge, based on the theory of vehicle-track coupled dynamics, the rigid-flexible coupled dynamic model of metro vehicle-track-LSCSB system is established by using finite element method and multi-rigid-body dynamics. Adopting this model, the deformation of LSCSB subject to temperature is analyzed, then the comprehensive effect of track random irregularity and rail deformation caused by temperature load is considered to study the dynamic characteristics of metro vehicle running through the bridge, and finally the influences of temperature increment and running speed on concerned dynamic indices of vehicle are studied. The results show that the LSCSB deforms obviously subject to temperature load, and the overall performance is that the cooling is arched, and the heating is bent, and the shape variable changes almost linearly with the temperature load. According to the parameters studied in this paper, the rail deformation caused by temperature load increases the wheel-rail vertical force, derailment coefficient and wheel load reduction rate by 1.5%, 3.1% and 5% respectively. The vertical acceleration of the vehicle body decreases by 2.4% under the cooling condition, while increases by 3.7% under the heating condition. The dynamic response of the bridge changes under temperature load. The maximum vertical and horizontal displacement in the middle of the main beam span are 6.24 mm and 2.19 mm respectively, and the maximum vertical and horizontal acceleration are 1.29 cm/s<sup>2</sup> and 2.54cm/s<sup>2</sup> respectively. The derailment coefficient and vertical acceleration of vehicle body are more affected by temperature load, and the wheel load reduction rate and wheel-rail vertical force are more affected by speed. The conclusion of this paper provides a reference for subsequent scholars to study the influence of thermal deformation on the dynamic response of vehicles on LSCSB. 展开更多
关键词 Vehicle Engineering Vehicle rail Bridge Coupling vibration LSCSB Temperature Load Dynamic Characteristics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部