Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using th...Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.展开更多
Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy require...Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy requires bridges to maintain functionality even after severe earthquakes.In this context,this paper proposes a controlled rocking pile foundation(CRPF)system and numerically evaluates bridges′degree of seismic resilience.The CRPF system allows a pile cap to rock on a pile foundation and dissipate seismic energy through inelastic deformations of replaceable bar fuses that connect a pile cap and piles.Following the conceptual design of the CRPF system,two analytical models were developed for a bridge pier utilizing the CRPF system and a pier designed to develop a plastic hinge in its column.The analytical results indicate that,after experiencing a severe earthquake,a conventionally designed bridge pier sustained substantial damage in its column and exhibited significant residual displacement.In contrast,a pier using the CRPF system showed negligible residual displacement and maintained elastic behavior except,as expected,for bar fuses.The damaged fuses can be rapidly replaced to recover bridge seismic resistance following an earthquake.Therefore,the CRPF system helps to achieve the desired postearthquake performance objectives.展开更多
Jiangyin Yangtze highway bridge is a suspension bridge with main span 1 385 m. The south tower pier is located on a 70 m bedrock slope with bedding plane of strata tipping to the river channel and several weak interca...Jiangyin Yangtze highway bridge is a suspension bridge with main span 1 385 m. The south tower pier is located on a 70 m bedrock slope with bedding plane of strata tipping to the river channel and several weak intercalated layers. The stability of the tower pier is one of the main engineering geologic problems. On the basis of investigation and survey of relevant geologic condition analyses, the geomechanical model experiments are carried out for stability study of various foundation alternatives’ advantages and disadvantages. Pile foundation has been finally adopted and constructed, and this is justified by practice.展开更多
A number of dry bridges have been built to substitute for the roadbed on the Qinghai-Tibet Railway,China.The aim of this study was to investigate the exothermic process of cast-in-place (CIP) pile foundation of a dry ...A number of dry bridges have been built to substitute for the roadbed on the Qinghai-Tibet Railway,China.The aim of this study was to investigate the exothermic process of cast-in-place (CIP) pile foundation of a dry bridge and its harm to the stability of nearby frozen ground.We present 3D heat conduction functions of a concrete pile and of frozen ground with related boundaries.Our analysis is based on the theory of heat conduction and the exponent law describing the adiabatic temperature rise caused by hydration heat.Results under continuous and initial conditions were combined to establish a finite element model of a CIP pile-frozen ground system for a dry bridge under actual field conditions in cold regions.Numerical results indicated that the process could effectively simulate the exothermic process of CIP pile foundation.Thermal disturbance to frozen ground under a long dry bridge caused by the casting temperature and hydration heat of CIP piles was substantial and long-lasting.The simulated thermal analysis results agreed with field measurements and some significant rules relating to the problem were deduced and conclusions reached.展开更多
库水位循环作用下,库岸边坡岩土体物理力学性质劣化,引起岸坡变形、滑移,将对桥梁基础、桥墩及上部结构产生不同程度损伤,甚至会导致桥梁上部结构落梁、垮塌。针对重庆万州长江二桥库岸边坡失稳致灾问题,采用FEM-SPH(finite element met...库水位循环作用下,库岸边坡岩土体物理力学性质劣化,引起岸坡变形、滑移,将对桥梁基础、桥墩及上部结构产生不同程度损伤,甚至会导致桥梁上部结构落梁、垮塌。针对重庆万州长江二桥库岸边坡失稳致灾问题,采用FEM-SPH(finite element method-smoothed particle hydrodynamics)转换耦合算法建立了岸坡-桥梁三维有限元模型,结合桥位处地质勘测数据模拟了变动水位条件下岸坡变形、滑移、失稳全过程,揭示了岸坡滑移与桥梁桩基相互作用机理,研究了桥墩偏位规律及下部结构失效模式。结果表明:以滑动带有限元网格悉数转换为SPH(smoothed particle hydrodynamics)粒子作为岸坡失稳判据,FEM-SPH转换耦合算法能够更直观、准确地模拟库岸边坡从变形、滑移至失稳全过程;桥位处岸坡将在第16、20次水位升降循环过程中发生失稳破坏;随着岸坡变形、滑移、失稳演化,桥墩偏位呈“缓增-激增”的变化趋势;岸坡发生第2次失稳时,桩基础在土-岩交界面上部发生剪切破坏,破坏面与水平面夹角约为60°。展开更多
基金Projects(2009G008-B,2010G018-E-3) supported by Key Projects of China Railway Ministry Science and Technology Research and Development ProgramProject(CX2013B076) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.
基金Supported by:National Natural Science Foundation of China under Grant Nos.52008092,U1934205,51908123the China Postdoctoral Science Foundation under Grant No.2021M690034+1 种基金the International Postdoctoral Exchange Fellowship Program of Chinathe Zhishan Postdoctoral Fellowship Program。
文摘Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy requires bridges to maintain functionality even after severe earthquakes.In this context,this paper proposes a controlled rocking pile foundation(CRPF)system and numerically evaluates bridges′degree of seismic resilience.The CRPF system allows a pile cap to rock on a pile foundation and dissipate seismic energy through inelastic deformations of replaceable bar fuses that connect a pile cap and piles.Following the conceptual design of the CRPF system,two analytical models were developed for a bridge pier utilizing the CRPF system and a pier designed to develop a plastic hinge in its column.The analytical results indicate that,after experiencing a severe earthquake,a conventionally designed bridge pier sustained substantial damage in its column and exhibited significant residual displacement.In contrast,a pier using the CRPF system showed negligible residual displacement and maintained elastic behavior except,as expected,for bar fuses.The damaged fuses can be rapidly replaced to recover bridge seismic resistance following an earthquake.Therefore,the CRPF system helps to achieve the desired postearthquake performance objectives.
文摘Jiangyin Yangtze highway bridge is a suspension bridge with main span 1 385 m. The south tower pier is located on a 70 m bedrock slope with bedding plane of strata tipping to the river channel and several weak intercalated layers. The stability of the tower pier is one of the main engineering geologic problems. On the basis of investigation and survey of relevant geologic condition analyses, the geomechanical model experiments are carried out for stability study of various foundation alternatives’ advantages and disadvantages. Pile foundation has been finally adopted and constructed, and this is justified by practice.
基金Project supported by the National Natural Science Foundation of China (No.50678076)the Opening Foundation of the State Key Laboratory of Frozen Soil Engineering (No.SKLFSE200603),China
文摘A number of dry bridges have been built to substitute for the roadbed on the Qinghai-Tibet Railway,China.The aim of this study was to investigate the exothermic process of cast-in-place (CIP) pile foundation of a dry bridge and its harm to the stability of nearby frozen ground.We present 3D heat conduction functions of a concrete pile and of frozen ground with related boundaries.Our analysis is based on the theory of heat conduction and the exponent law describing the adiabatic temperature rise caused by hydration heat.Results under continuous and initial conditions were combined to establish a finite element model of a CIP pile-frozen ground system for a dry bridge under actual field conditions in cold regions.Numerical results indicated that the process could effectively simulate the exothermic process of CIP pile foundation.Thermal disturbance to frozen ground under a long dry bridge caused by the casting temperature and hydration heat of CIP piles was substantial and long-lasting.The simulated thermal analysis results agreed with field measurements and some significant rules relating to the problem were deduced and conclusions reached.