The paper summarizes the development of mobile communication of domestic and foreign railways,and proposes the priorities for tackling key technological problems of railway 5G private network according to the technica...The paper summarizes the development of mobile communication of domestic and foreign railways,and proposes the priorities for tackling key technological problems of railway 5G private network according to the technical routes of railway next-generation mobile communication determined by China State Railway Group Co.,Ltd.From the aspects of work objectives,principles,technical routes and innovative working methods,the paper elaborates the ideas of railway 5G scientific and technological research,puts forward the contents and plans of scientific and technological research on railway 5G private network,systematically organizes the achievements in the scientific and technological research stage of railway 5G private network,and sets forth the key contents of next-step scientific and technological research.展开更多
The innovation of enterprise management model and the improvement of efficiency are the impetuses to the internal development of enterprises. Computer information technology, with its advantages in low cost, high effi...The innovation of enterprise management model and the improvement of efficiency are the impetuses to the internal development of enterprises. Computer information technology, with its advantages in low cost, high efficiency and high quality, has been widely popularized and applied in the enterprise development. In this paper, the core competitiveness of enterprises in the information age and the far-reaching influence of a creative, sustainable growth on the development of enterprises are analyzed mainly from the information-based application in enterprise management and the influence of informatization and networking on enterprise management.展开更多
Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new...Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching.This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.Design/methodology/approach–This paper first briefly introduces the functions and configuration of the intelligent CTC system.Some new servers,terminals and interfaces are introduced,which are plan adjustment server/terminal,interface for automatic train operation(ATO),interface for Dynamic Monitoring System of Train Control Equipment(DMS),interface for Power Supervisory Control and Data Acquisition(PSCADA),interface for Disaster Monitoring,etc.Findings–The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans,safety control of train routes and commands,traffic information data platform,integrated simulation of traffic dispatching and ATO function.These technologies have been applied in the Beijing-Zhangjiakou HSR,which commenced operations at the end of 2019.Implementing these key intelligent functions has improved the train dispatching command capacity,ensured the safe operation of intelligent HSR,reduced the labor intensity of dispatching operators and enhanced the intelligence level of China’s dispatching system.Originality/value–This paper provides further challenges and research directions for the intelligent dispatching command of HSR.To achieve the objectives,new measures need to be conducted,including the development of advanced technologies for intelligent dispatching command,coping with new requirements with the development of China’s railway signaling system,the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.展开更多
In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor...In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure(EWP). By means of a threedimensional(3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system(TDS) widely used in China and its optimized drainage system(ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice,including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 k Pa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.展开更多
This paper introduces the methods and technicalities of applicating information technology in a mining area railway transport system. The pattern Client /Server is adopted in this system. There are two types of client...This paper introduces the methods and technicalities of applicating information technology in a mining area railway transport system. The pattern Client /Server is adopted in this system. There are two types of clients, i.e. PC and terminal. This article focuses on the system demand analysis, the data flow, the system architecture and some technical details.展开更多
This paper described progress and development on the welding technology and vehicle manufacture during last decade, which promoted the technical progress for development and creation a considerable variety of high qua...This paper described progress and development on the welding technology and vehicle manufacture during last decade, which promoted the technical progress for development and creation a considerable variety of high quality products in railway locomotive and rolling stock industry.展开更多
At present,rail transit is developing rapidly in the world,and this means new and changing requirements for the training of talents in railway engineering experiments.Given the current problems of limited laboratory/f...At present,rail transit is developing rapidly in the world,and this means new and changing requirements for the training of talents in railway engineering experiments.Given the current problems of limited laboratory/field instruments for railway engineering experimentsand the safety/administrative difficulties of going to the frontline of railway lines to teach railway engineering experiemnts in the field,the Department of Railway Engineering of Central South University tried to introduce virtual reality(VR)technology to teach students experiments in the field of railway engineering.Through the virtualized experimental methods,students can carry out railway engineering experiments such as;vehicle wheel pair off-axis experiments,track geometry and position detection,etc.by immersive means.It was observed that after performing virtual simulation experiments,students appeared conversant in subsequent field experiments.Thus,VR greatly improves the teaching efficiency of railway engineering experiments.展开更多
This is a review of high-speed train development in the sense of technology advances all over the world. Three generations of high-speed trains are classified according to their technical characteristics and maximum o...This is a review of high-speed train development in the sense of technology advances all over the world. Three generations of high-speed trains are classified according to their technical characteristics and maximum operating speed. Emphasis is given to the newly developed high-speed train in China, CRH380. The theoretical foundations and future development of CRH380 are briefly discussed.展开更多
Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- ti...Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- tion was developed for tunneling in karst area. Then, a new system of ventilation by involving the dedusting technol- ogy was proposed and used in the field, which received a good air quality. Finally, a method to minimize the dis- tance between the working face and the invert installation was proposed by optimizing the invert installation and adopting the micro bench method. Applying the method to the project obtained an excellent result. The achievement obtained for this study would be able to provide a valuable reference to similar projects in the future.展开更多
By system analysis and imitating modeling authors show the most effective modern techniques for railway electric systems control. Modem measure technologies PMU-WAMS and smart grid allow to solve real time tasks of ce...By system analysis and imitating modeling authors show the most effective modern techniques for railway electric systems control. Modem measure technologies PMU-WAMS and smart grid allow to solve real time tasks of centralizing control of railway electric systems. Quantity characteristics of control effectiveness are determined. According to computer modeling the situation approach is available for practical tasks of railway electric system control.展开更多
5G technology is indispensable for developing comprehensive perception and ubiquitous interconnection of intelligent high-speed railways(HSRs),and can be applied to many scenarios in intelligent construction,intellige...5G technology is indispensable for developing comprehensive perception and ubiquitous interconnection of intelligent high-speed railways(HSRs),and can be applied to many scenarios in intelligent construction,intelligent equipment,intelligent operation and in other fields.In order to promote the standardized application of 5G technology in intelligent HSRs in a scientific and orderly manner and to avoid redundant construction and wasteful investment,it is imperative to carry out a systematical top-level design of the application scenarios at the initial stage.To this end,after investigating and analyzing the 5G application demands in different aspects of HSRs and the general structure of the railway 5G network,this paper formulates an overall planning of 5G technology application scenarios and proposes solutions to some typical application scenarios in the intelligent HSR system,based on the architecture and requirements of the intelligent HSR system.展开更多
Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional s...Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional speed and efficiency,has garnered widespread attention as a transformative mode of transportation that transcends borders and fosters economic development.The Kuala Lumpur-Singapore(KL-SG)HSR project stands as a prominent exemplar of this paradigm,symbolizing the potential of HSR to serve as a catalyst for national economic advancement.Design/methodologylapproach-This paper is prepared to provide an insight into the benefits and advantages of HSR based on proven case studies and references from global HSRs,including China,Spain,France and Japan.Findings-The findings that have been obtained focus on enhanced connectivity and accessibility,attracting foreign direct investment,revitalizing regional economies,urban development and city regeneration,boosting tourism and cultural exchange,human capital development,regionai integration and environmental and sustainability benefits.Originality/value-The KL-SG HSR,linking Kuala Lumpur and Singapore,epitomizes the potential for HSR to be a transformative agent in the realm of economic development.This project encapsulates the aspirations of two dynamic Southeast Asian economies,united in their pursuit of sustainable growth,enhanced connectivity and global competitiveness.By scrutinizing the KLSG High-Speed Rail through the lens of economic benchmarking,a deeper understanding emerges of how such projects can drive progress in areas such as cross-border trade,tourism,urban development and technological innovation.展开更多
The port railway operation in Germany and Europe is not least due to its long history of technological and regulatory developments characterized by a high number of players and a lack of comprehensive planning and opt...The port railway operation in Germany and Europe is not least due to its long history of technological and regulatory developments characterized by a high number of players and a lack of comprehensive planning and optimization of all relevant processes.Innovative technologies and business processes are therefore useful and needed to achieve key steps on the way to an overall optimization of rail transport within global supply chains.A substantial part of the European rail freight transport has its origin or its destination in an inland or sea port.Considering the railway system,ports play a more important role for urgently needed innovations than the pure interfaces between sea and land transport.Especially ports with their own railway system have an own responsibility in this matter.Insofar the goal of the Bremen Port Railway—which already now has a leading share of railway in modal split in Europe—is to exploit the opportunities offered by digitalization.Significant steps for this are the optimization and gradually automatization of rail operational processes on the last mile including modern and transparent IT systems and the designing of autonomous shunting processes.Together with research partners ISL(Institute of Shipping Economics and Logistics Bremen),BIBA(Bremen Institute for Production and Logistics)and IVE(Institute for Transport,Railway Construction and Operation in Brunswick)and in connection with associated business partners the project Rang-E has been applied for at the Ministry of Transport in the funding initiative IHATEC(Innovated HArbour TEChnologies)—and had won a grant to perform the proposed work.Basic thoughts are outlined in the following.展开更多
Bridges,tunnels,cuttings and high subgrade account for a relatively large proportion in China’s heavy-haul railway system,where 10000 t of unit trains and 20000 t of combined trains are in operation.When a train oper...Bridges,tunnels,cuttings and high subgrade account for a relatively large proportion in China’s heavy-haul railway system,where 10000 t of unit trains and 20000 t of combined trains are in operation.When a train operation accident occurs,it can easily cause vehicle intrusions,slant-span lines,tipping and stacking.Based on the viewpoint of system engineering,rescue methods such as hoisting,lifting,pulling and overturning are integrated,according to the characteristics of heavy-haul transport and the construction practice of train accident rescue system.A scheme of technical research and equipment configuration relating to heavy-haul railway rescue in China is put forward based on the situation—embankment,bridge,tunnel(including cuttings),ramp and curve rescue,and so on—and three-dimensional finite-element modelling and calculation checks on the key components are carried out.展开更多
Safety and reliability are absolutely vital for sophisticated Railway Point Machines(RPMs).Hence,various kinds of sensors and transducers are deployed on RPMs as much as possible to monitor their behaviour for detecti...Safety and reliability are absolutely vital for sophisticated Railway Point Machines(RPMs).Hence,various kinds of sensors and transducers are deployed on RPMs as much as possible to monitor their behaviour for detection of incipient faults and anticipation using data-driven technology.This paper firstly analyses and summarizes six RPMs’characteristics and then reviews the data-driven algorithms applied to fault diagnosis in RPMs during the past decade.It provides not only the process and evaluation metrics but also the pros and cons of these different methods.Ultimately,regarding the characteristics of RPMs and the existing studies,eight challenging problems and promising research directions are pointed out.展开更多
1 Project overview The Beijing–Shanghai High Speed Railway(HSR)represents a major national strategic transportation project in China that is characterized by the largest-scale one-time investment in the country.At th...1 Project overview The Beijing–Shanghai High Speed Railway(HSR)represents a major national strategic transportation project in China that is characterized by the largest-scale one-time investment in the country.At the time,it was the longest HSR constructed in a single phase,with the highest technical standards in the world.Acting as an HSR artery between the Northern and Eastern regions of China,the Beijing–Shanghai HSR is the busiest HSR with the highest ridership in the country and the world at large.Additionally,it is the only commercial HSR consistently operates at a speed of 350 km/h globally.展开更多
China’s high-speed railway network has already achieved speeds of 350 km/h;however,this could be further increased to 400 km/h.After considering the development status and technical level of the high-speed railway sy...China’s high-speed railway network has already achieved speeds of 350 km/h;however,this could be further increased to 400 km/h.After considering the development status and technical level of the high-speed railway system in China,this study indicates that there are four key technologies involved in improving its operational speed:the track,the electrical moving unit,the control system and the traction power supply.Through an experimental analysis,an evaluation index for the high-speed railway is then constructed based on four aspects:safety,comfort,intelligence and environmental protection.Using this system,the rationality of the high-speed railway speed-improvement plan can be scientifically evaluated.The results are of practical significance to the Chinese railway administration,as they can be used to formulate specific plans to increase rail speeds,and therefore promote the rapid development of the high-speed railway network in China.展开更多
In the past few decades,high-speed trains have witnessed tremendous and vigorous development with the appearance of the oil crisis and industrialization,which became a significant trend in the transportation industry ...In the past few decades,high-speed trains have witnessed tremendous and vigorous development with the appearance of the oil crisis and industrialization,which became a significant trend in the transportation industry the world over.With the increase of high-speed railway mileage,the amount of high-speed train has grown sharply,the service life of the trains has increased gradually and the components of the vehicle traction system have become worn and aged as a result.Therefore,advanced maintenance technology and its application are key factors to reduce maintenance cost,human resource input and ensure safe,stable and reliable operation of trains.This paper summarizes and discusses the development,application mode,maintenance management and maintenance technology of high-speed railways of the major countries in the world,especially discusses the condition-based maintenance and the key technology of the traction electrical system,and offers the prospect of research direction and the development of traction maintenance technology.展开更多
Safety is one of the most critical themes in any large-scale railway construction project.Recognizing the importance of safety in railway engineering,practitioners and researchers have proposed various standards and p...Safety is one of the most critical themes in any large-scale railway construction project.Recognizing the importance of safety in railway engineering,practitioners and researchers have proposed various standards and procedures to ensure safety in construction activities.In this study,we first review four critical research areas of risk warning technologies and emergency response mechanisms in railway construction,namely,(i)risk identification methods of large-scale railway construction projects,(ii)risk management of large-scale railway construction,(iii)emergency response planning and management,and(iv)emergency response and rescue mechanisms.After reviewing the existing studies,we present four corresponding research areas and recommendations on the Sichuan-Tibet Railway construction.This study aims to inject new significant theoretical elements into the decision-making process and construction of this railway project in China.展开更多
Deep mixed column (DMC) is known as one of the effective methods for stabilizing the natural earth beneath road or railway embankments to control stability and settlements under traffic loads. The load distribution ...Deep mixed column (DMC) is known as one of the effective methods for stabilizing the natural earth beneath road or railway embankments to control stability and settlements under traffic loads. The load distribution mechanism of embankment overlying on loose subgrades stabilized with DMCs considerably depends on the columns' mechanical and geometrical specifications. The present study uses the laboratory investigation to understand the behavior of embankments lying on loose sandy subgrade in three different conditions: (1) subgrade without reinforcement, (2) subgrade reinforced with DMCs in a triangular pattern and horizontal plan, and (3) subgrade reinforced with DMCs in a square pattern and horizontal plan. For this purpose, by adopting the scale factor of 1:10, a reference embankment with 20 cm height, 250 cm length, and 93% maximum dry density achieved in standard Proctor compaction test was constructed over a 70 cm thick loose sandy bed with the relative density of 50% in a loading chamber, and its load-displacement behavior was evaluated until the failure occurred. In the next two tests, DMCs (with 10 cm diameter, 40 cm length, and 25 cm center-to-center spacing) were placed in groups in two different patterns (square and triangular) in the same sandy bed beneath the embankment and, consequently, the embankments were constructed over the reinforced subgrades and gradually loaded until the failure happened. In all the three tests, the load-displacement behaviors of the embankment and the selected DMCs were instrumented for monitoring purpose. The obtained results implied 64% increase in failure load and 40% decrease in embankment crest settlement when using the square pattern of DMCs compared with those of the reference embankment, while these values were 63% and 12%, respectively, for DMCs in triangular pattern. This confirmed generally better performance of DMCs with a triangular pattern.展开更多
文摘The paper summarizes the development of mobile communication of domestic and foreign railways,and proposes the priorities for tackling key technological problems of railway 5G private network according to the technical routes of railway next-generation mobile communication determined by China State Railway Group Co.,Ltd.From the aspects of work objectives,principles,technical routes and innovative working methods,the paper elaborates the ideas of railway 5G scientific and technological research,puts forward the contents and plans of scientific and technological research on railway 5G private network,systematically organizes the achievements in the scientific and technological research stage of railway 5G private network,and sets forth the key contents of next-step scientific and technological research.
文摘The innovation of enterprise management model and the improvement of efficiency are the impetuses to the internal development of enterprises. Computer information technology, with its advantages in low cost, high efficiency and high quality, has been widely popularized and applied in the enterprise development. In this paper, the core competitiveness of enterprises in the information age and the far-reaching influence of a creative, sustainable growth on the development of enterprises are analyzed mainly from the information-based application in enterprise management and the influence of informatization and networking on enterprise management.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62203468Young Elite Scientist Sponsorship Program by CAST under Grant 2022QNRC001+1 种基金Foundation of China State Railway Group Co.,Ltd.under Grant K2021X001Foundation of China Academy of Railway Sciences Corporation Limited under Grant 2021YJ315.
文摘Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching.This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.Design/methodology/approach–This paper first briefly introduces the functions and configuration of the intelligent CTC system.Some new servers,terminals and interfaces are introduced,which are plan adjustment server/terminal,interface for automatic train operation(ATO),interface for Dynamic Monitoring System of Train Control Equipment(DMS),interface for Power Supervisory Control and Data Acquisition(PSCADA),interface for Disaster Monitoring,etc.Findings–The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans,safety control of train routes and commands,traffic information data platform,integrated simulation of traffic dispatching and ATO function.These technologies have been applied in the Beijing-Zhangjiakou HSR,which commenced operations at the end of 2019.Implementing these key intelligent functions has improved the train dispatching command capacity,ensured the safe operation of intelligent HSR,reduced the labor intensity of dispatching operators and enhanced the intelligence level of China’s dispatching system.Originality/value–This paper provides further challenges and research directions for the intelligent dispatching command of HSR.To achieve the objectives,new measures need to be conducted,including the development of advanced technologies for intelligent dispatching command,coping with new requirements with the development of China’s railway signaling system,the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.
基金supported by the National Natural Science Foundation of China (Grant No. U1934211)the Open Foundation of National Engineering Research Center of High-speed Railway Construction Technology (Grant No. HSR202005)Scientific Research Project of Hunan Education Department (Grant No.20B596)。
文摘In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure(EWP). By means of a threedimensional(3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system(TDS) widely used in China and its optimized drainage system(ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice,including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 k Pa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.
文摘This paper introduces the methods and technicalities of applicating information technology in a mining area railway transport system. The pattern Client /Server is adopted in this system. There are two types of clients, i.e. PC and terminal. This article focuses on the system demand analysis, the data flow, the system architecture and some technical details.
文摘This paper described progress and development on the welding technology and vehicle manufacture during last decade, which promoted the technical progress for development and creation a considerable variety of high quality products in railway locomotive and rolling stock industry.
基金Education and Teaching Reform Project of Central South University(2019jy097).
文摘At present,rail transit is developing rapidly in the world,and this means new and changing requirements for the training of talents in railway engineering experiments.Given the current problems of limited laboratory/field instruments for railway engineering experimentsand the safety/administrative difficulties of going to the frontline of railway lines to teach railway engineering experiemnts in the field,the Department of Railway Engineering of Central South University tried to introduce virtual reality(VR)technology to teach students experiments in the field of railway engineering.Through the virtualized experimental methods,students can carry out railway engineering experiments such as;vehicle wheel pair off-axis experiments,track geometry and position detection,etc.by immersive means.It was observed that after performing virtual simulation experiments,students appeared conversant in subsequent field experiments.Thus,VR greatly improves the teaching efficiency of railway engineering experiments.
文摘This is a review of high-speed train development in the sense of technology advances all over the world. Three generations of high-speed trains are classified according to their technical characteristics and maximum operating speed. Emphasis is given to the newly developed high-speed train in China, CRH380. The theoretical foundations and future development of CRH380 are briefly discussed.
文摘Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- tion was developed for tunneling in karst area. Then, a new system of ventilation by involving the dedusting technol- ogy was proposed and used in the field, which received a good air quality. Finally, a method to minimize the dis- tance between the working face and the invert installation was proposed by optimizing the invert installation and adopting the micro bench method. Applying the method to the project obtained an excellent result. The achievement obtained for this study would be able to provide a valuable reference to similar projects in the future.
文摘By system analysis and imitating modeling authors show the most effective modern techniques for railway electric systems control. Modem measure technologies PMU-WAMS and smart grid allow to solve real time tasks of centralizing control of railway electric systems. Quantity characteristics of control effectiveness are determined. According to computer modeling the situation approach is available for practical tasks of railway electric system control.
文摘5G technology is indispensable for developing comprehensive perception and ubiquitous interconnection of intelligent high-speed railways(HSRs),and can be applied to many scenarios in intelligent construction,intelligent equipment,intelligent operation and in other fields.In order to promote the standardized application of 5G technology in intelligent HSRs in a scientific and orderly manner and to avoid redundant construction and wasteful investment,it is imperative to carry out a systematical top-level design of the application scenarios at the initial stage.To this end,after investigating and analyzing the 5G application demands in different aspects of HSRs and the general structure of the railway 5G network,this paper formulates an overall planning of 5G technology application scenarios and proposes solutions to some typical application scenarios in the intelligent HSR system,based on the architecture and requirements of the intelligent HSR system.
基金Universiti Tun Hussein Onn Malaysia(UTHM)through Tier 1(Vot H936).
文摘Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional speed and efficiency,has garnered widespread attention as a transformative mode of transportation that transcends borders and fosters economic development.The Kuala Lumpur-Singapore(KL-SG)HSR project stands as a prominent exemplar of this paradigm,symbolizing the potential of HSR to serve as a catalyst for national economic advancement.Design/methodologylapproach-This paper is prepared to provide an insight into the benefits and advantages of HSR based on proven case studies and references from global HSRs,including China,Spain,France and Japan.Findings-The findings that have been obtained focus on enhanced connectivity and accessibility,attracting foreign direct investment,revitalizing regional economies,urban development and city regeneration,boosting tourism and cultural exchange,human capital development,regionai integration and environmental and sustainability benefits.Originality/value-The KL-SG HSR,linking Kuala Lumpur and Singapore,epitomizes the potential for HSR to be a transformative agent in the realm of economic development.This project encapsulates the aspirations of two dynamic Southeast Asian economies,united in their pursuit of sustainable growth,enhanced connectivity and global competitiveness.By scrutinizing the KLSG High-Speed Rail through the lens of economic benchmarking,a deeper understanding emerges of how such projects can drive progress in areas such as cross-border trade,tourism,urban development and technological innovation.
文摘The port railway operation in Germany and Europe is not least due to its long history of technological and regulatory developments characterized by a high number of players and a lack of comprehensive planning and optimization of all relevant processes.Innovative technologies and business processes are therefore useful and needed to achieve key steps on the way to an overall optimization of rail transport within global supply chains.A substantial part of the European rail freight transport has its origin or its destination in an inland or sea port.Considering the railway system,ports play a more important role for urgently needed innovations than the pure interfaces between sea and land transport.Especially ports with their own railway system have an own responsibility in this matter.Insofar the goal of the Bremen Port Railway—which already now has a leading share of railway in modal split in Europe—is to exploit the opportunities offered by digitalization.Significant steps for this are the optimization and gradually automatization of rail operational processes on the last mile including modern and transparent IT systems and the designing of autonomous shunting processes.Together with research partners ISL(Institute of Shipping Economics and Logistics Bremen),BIBA(Bremen Institute for Production and Logistics)and IVE(Institute for Transport,Railway Construction and Operation in Brunswick)and in connection with associated business partners the project Rang-E has been applied for at the Ministry of Transport in the funding initiative IHATEC(Innovated HArbour TEChnologies)—and had won a grant to perform the proposed work.Basic thoughts are outlined in the following.
文摘Bridges,tunnels,cuttings and high subgrade account for a relatively large proportion in China’s heavy-haul railway system,where 10000 t of unit trains and 20000 t of combined trains are in operation.When a train operation accident occurs,it can easily cause vehicle intrusions,slant-span lines,tipping and stacking.Based on the viewpoint of system engineering,rescue methods such as hoisting,lifting,pulling and overturning are integrated,according to the characteristics of heavy-haul transport and the construction practice of train accident rescue system.A scheme of technical research and equipment configuration relating to heavy-haul railway rescue in China is put forward based on the situation—embankment,bridge,tunnel(including cuttings),ramp and curve rescue,and so on—and three-dimensional finite-element modelling and calculation checks on the key components are carried out.
基金the National Key R&D Program of China(Grant No.2021YFF0501102)the National Natural Science Foundation of China(Grant No.62120106011 and Grant No.U1934219).
文摘Safety and reliability are absolutely vital for sophisticated Railway Point Machines(RPMs).Hence,various kinds of sensors and transducers are deployed on RPMs as much as possible to monitor their behaviour for detection of incipient faults and anticipation using data-driven technology.This paper firstly analyses and summarizes six RPMs’characteristics and then reviews the data-driven algorithms applied to fault diagnosis in RPMs during the past decade.It provides not only the process and evaluation metrics but also the pros and cons of these different methods.Ultimately,regarding the characteristics of RPMs and the existing studies,eight challenging problems and promising research directions are pointed out.
文摘1 Project overview The Beijing–Shanghai High Speed Railway(HSR)represents a major national strategic transportation project in China that is characterized by the largest-scale one-time investment in the country.At the time,it was the longest HSR constructed in a single phase,with the highest technical standards in the world.Acting as an HSR artery between the Northern and Eastern regions of China,the Beijing–Shanghai HSR is the busiest HSR with the highest ridership in the country and the world at large.Additionally,it is the only commercial HSR consistently operates at a speed of 350 km/h globally.
文摘China’s high-speed railway network has already achieved speeds of 350 km/h;however,this could be further increased to 400 km/h.After considering the development status and technical level of the high-speed railway system in China,this study indicates that there are four key technologies involved in improving its operational speed:the track,the electrical moving unit,the control system and the traction power supply.Through an experimental analysis,an evaluation index for the high-speed railway is then constructed based on four aspects:safety,comfort,intelligence and environmental protection.Using this system,the rationality of the high-speed railway speed-improvement plan can be scientifically evaluated.The results are of practical significance to the Chinese railway administration,as they can be used to formulate specific plans to increase rail speeds,and therefore promote the rapid development of the high-speed railway network in China.
文摘In the past few decades,high-speed trains have witnessed tremendous and vigorous development with the appearance of the oil crisis and industrialization,which became a significant trend in the transportation industry the world over.With the increase of high-speed railway mileage,the amount of high-speed train has grown sharply,the service life of the trains has increased gradually and the components of the vehicle traction system have become worn and aged as a result.Therefore,advanced maintenance technology and its application are key factors to reduce maintenance cost,human resource input and ensure safe,stable and reliable operation of trains.This paper summarizes and discusses the development,application mode,maintenance management and maintenance technology of high-speed railways of the major countries in the world,especially discusses the condition-based maintenance and the key technology of the traction electrical system,and offers the prospect of research direction and the development of traction maintenance technology.
基金This study was supported by the National Natural Science Foundation of China(Grant No.71942006)the Fundamental Research Funds for the Central Universities(2019RC053).
文摘Safety is one of the most critical themes in any large-scale railway construction project.Recognizing the importance of safety in railway engineering,practitioners and researchers have proposed various standards and procedures to ensure safety in construction activities.In this study,we first review four critical research areas of risk warning technologies and emergency response mechanisms in railway construction,namely,(i)risk identification methods of large-scale railway construction projects,(ii)risk management of large-scale railway construction,(iii)emergency response planning and management,and(iv)emergency response and rescue mechanisms.After reviewing the existing studies,we present four corresponding research areas and recommendations on the Sichuan-Tibet Railway construction.This study aims to inject new significant theoretical elements into the decision-making process and construction of this railway project in China.
基金the financial support of Iran Transportation Research Institute for doing this project(Grant No.91/1/5306)
文摘Deep mixed column (DMC) is known as one of the effective methods for stabilizing the natural earth beneath road or railway embankments to control stability and settlements under traffic loads. The load distribution mechanism of embankment overlying on loose subgrades stabilized with DMCs considerably depends on the columns' mechanical and geometrical specifications. The present study uses the laboratory investigation to understand the behavior of embankments lying on loose sandy subgrade in three different conditions: (1) subgrade without reinforcement, (2) subgrade reinforced with DMCs in a triangular pattern and horizontal plan, and (3) subgrade reinforced with DMCs in a square pattern and horizontal plan. For this purpose, by adopting the scale factor of 1:10, a reference embankment with 20 cm height, 250 cm length, and 93% maximum dry density achieved in standard Proctor compaction test was constructed over a 70 cm thick loose sandy bed with the relative density of 50% in a loading chamber, and its load-displacement behavior was evaluated until the failure occurred. In the next two tests, DMCs (with 10 cm diameter, 40 cm length, and 25 cm center-to-center spacing) were placed in groups in two different patterns (square and triangular) in the same sandy bed beneath the embankment and, consequently, the embankments were constructed over the reinforced subgrades and gradually loaded until the failure happened. In all the three tests, the load-displacement behaviors of the embankment and the selected DMCs were instrumented for monitoring purpose. The obtained results implied 64% increase in failure load and 40% decrease in embankment crest settlement when using the square pattern of DMCs compared with those of the reference embankment, while these values were 63% and 12%, respectively, for DMCs in triangular pattern. This confirmed generally better performance of DMCs with a triangular pattern.