Taking the development of high-speed railway in China as background, and referring to the dynamic theory and wheel-rail contact mode, dynamic analysis model was established, considering the setting position of straigh...Taking the development of high-speed railway in China as background, and referring to the dynamic theory and wheel-rail contact mode, dynamic analysis model was established, considering the setting position of straight lines and running conditions of train in high-speed railway station yard. Using the established model, and choosing vehicle lateral acceleration and wheel suspension as the evaluation indexes, dynamic characteristic of vehicle traveling in turnout and adjacent area on main line was analyzed, and effects on travelling safety and stability of train aroused by length variation of straight lines were calculated based on analyzing the damping rules of vibration. The results show that, a certain length of straight lines can alleviate the vibration aroused in turnout and curve(turnout), length of straight lines connecting turnouts in different sections on main line was proposed to meet the demand of traveling stability, and shortening or cancelation of straight line for the scale limitation of station yard has less influence on operation safety of train.展开更多
In this paper, a method of railway line surveying system is proposed. This method can reduce the labour intensity in railway line surveying. It also can improve the work efficiency and overcome the obstruction to the ...In this paper, a method of railway line surveying system is proposed. This method can reduce the labour intensity in railway line surveying. It also can improve the work efficiency and overcome the obstruction to the ordinary operation of railways.展开更多
In order to address the issues of complex system structure and variable selection difficulty for the current heavy haul railway line status evaluation system, a three-category and three-layer heavy-haul line status ev...In order to address the issues of complex system structure and variable selection difficulty for the current heavy haul railway line status evaluation system, a three-category and three-layer heavy-haul line status evaluation variable set construction and reduction optimization method is proposed. Firstly, the status of heavy haul railway line is analyzed, and an initial set of evaluation variables affecting the line status is constructed. Then, based on the association rule and the principal component analysis method, key variables are extracted from the initial variable set to establish the evaluation system. Finally, this method is verified with actual data of a line. The results show that the service performance of heavy haul railway line can still be evaluated accurately when the evaluation variables are reduced by 60% in the proposed method.展开更多
Purpose–Revenue management(RM)is a significant technique to improve revenue with limited resources.With the macro environment of dramatically increasing transit capacity and rapid railway transport development in Chi...Purpose–Revenue management(RM)is a significant technique to improve revenue with limited resources.With the macro environment of dramatically increasing transit capacity and rapid railway transport development in China,it is necessary to involve the theory of RM into the operation and decision of railway passenger transport.Design/methodology/approach–This paper proposes the theory and framework of generalized RM of railway passenger transport(RMRPT),and the thoughts and methods of the main techniques in RMRPT,involving demand forecasting,line planning,inventory control,pricing strategies and information systems,are all studied and elaborated.The involved methods and techniques provide a sequential process to help with the decision-making for each stage of RMRPT.The corresponding techniques are integrated into the information system to support practical businesses in railway passenger transport.Findings–The combination of the whole techniques devotes to railway benefit improvement and transit resource utilization and has been applied into the practical operation and organization of railway passenger transport.Originality/value–The development of RMRPT would provide theoretical and technical support for the improvement of service quality as well as railway benefits and efficiency.展开更多
The railway tunnel concrete lining exposed to sulfate-bearing groundwater beyond 40 years in southwest of China was investigated. Field investigation, sulfate ions content and corroded products analysis, macro/microsc...The railway tunnel concrete lining exposed to sulfate-bearing groundwater beyond 40 years in southwest of China was investigated. Field investigation, sulfate ions content and corroded products analysis, macro/microscopic test were carried out. Results show that under the tunnel concrete lining structure and its served environmental conditions, sulfate solutions permeate concrete lining and accumulate on windward-side of concrete lining, resulting in the increase of sulfate ions content on windward-side and the diffusion of sulfate ions from windward-side to waterward-side, which cause the concrete lining of windward-side damaged seriously but the waterward-side of concrete lining is still in perfect condition. It is confirmed that structural characteristic of tunnel and environmental conditions lead to physical attack with the leaching of concrete and sodium sulfate crystallization as well as chemical corrosion with formation of gypsum in high sulfate concentration and formation of thaumasite in proper temperature rather than formation of ettringite. These achievements can provide academic and technical supports for understanding the deterioration mechanism of concrete lining as well as constructing railway tunnel under sulfate attack.展开更多
The 2DOF dynamic equations of the doable railway suspended vehicle for automatic transportation in the welding shop are established. The sensitivities are analyzed. The parameter design is researched in ADAMS in terms...The 2DOF dynamic equations of the doable railway suspended vehicle for automatic transportation in the welding shop are established. The sensitivities are analyzed. The parameter design is researched in ADAMS in terms of the inner railway radius, wheelbase, gauge, girder length of the doable railway suspended vehicle for automatic transportation in the welding product line. The mutual-restriction among the design variables is discussed and the selective ranges of the variables are confirmed. The result shows that the stability of the doable railway suspended vehicle for automatic transportation in the welding product line depends on parameters of the inner railway radius, wheelbase, gauge, girder length. The optimal results of the optimal objective and design variables have research significance for the virtual prototype of the doable suspension railway automation vehicle. The optimal results are input into the simulation model iteratively and the simulation results are fed back to the physical prototype. The veracity and reliability of peoformance forecast are improved so that the manufacture cost of the doable suspension railway automation vehicle is reduced significantly.展开更多
Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shie...Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shield tunnel structure test system". And the mechanical characteristics of segmental lining structure using straight assembling and staggered assembling were studied deeply. The results showed that, the mechanical characteristics of segmental lining structure varied with the water pressures; especially after cracking, the high water pressure played a significant role in slowing down the growing inner force and deformation. It also testi- fied that the failure characteristics varied with straight assembling structure and staggered assembling structure. Shear thilurc often occurred near longitudinal seam when using straight assembling.展开更多
Various technologies have recently been developed for high-speed railways, in order to boost commercial speeds from 300 km.h: to 400 km.h-1. Among these technologies, this paper introduces the 400 km-h-1 class curren...Various technologies have recently been developed for high-speed railways, in order to boost commercial speeds from 300 km.h: to 400 km.h-1. Among these technologies, this paper introduces the 400 km-h-1 class current collection performance evaluation methods that have been developed and demonstrated by Korea. Specifically, this paper reports details of the video-based monitoring techniques that have been adopted to inspect the stability of overhead contact line (OCL) components at 400 km.h-1 without direct contact with any components of the power supply system. Unlike conventional OCL monitoring systems, which detect contact wire positions using either laser sensors or line cameras, the developed system measures parameters in the active state by video data. According to experimental results that were obtained at a field-test site established at a commercial line, it is claimed that the proposed mea- surement system is capable of effectively measuring OCL parameters.展开更多
Datong-Qinhuangdao line, as the first electrified double-track heavy-haul line dedicated to coal transport in China, extends from Datong in the west, and reaches Qinhuangdao in the east, opened to traffic in December,...Datong-Qinhuangdao line, as the first electrified double-track heavy-haul line dedicated to coal transport in China, extends from Datong in the west, and reaches Qinhuangdao in the east, opened to traffic in December, 1992, totaling 653 km with the designed annual traffic volume of 1×108 t. In order to meet the demands of national economic development, the transport capacity of the line must be enhanced greatly. Depending on independent innovation, MOR, for the first time in the world,realizes the integration between GSM-R and Locotrol, the integration between 800 MHz digital radio and Locotrol, and the integration between a single set of Locotrol and SS4 locomotive. Meanwhile, CR develops equipment portfolio for heavy-haul through combining 2 high power locomotives of HXD series (means harmony) with controllable EOT. Relying on integration and innovation, it succeeds in operating 20 kt-level combined heavy-haul train on Datong-Qinhuangdao line, which tripled the annual traffic volume of the line from 1×108 t in 2002 to 3×108 t in 2007.展开更多
1. Review of railway work in 1996 The year 1996 was an important year for China’s railways in facing a historic turning point—— committing itself to a programme of structural re-
In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the disco...In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the discontinuation of local railway lines and introduce replacement buses to secure the transportation methods of the local people especially in rural areas. Based on the above background, targeting local railway lines that may be discontinued in the near future, appropriate bus stops when provided with potential bus stops were selected, the present study proposed a method that introduces routes for railway replacement buses adopting ant colony optimization (ACO). The improved ACO was designed and developed based on the requirements set concerning the route length, number of turns, road width, accessibility of railway lines and zones without bus stops as well as the constraint conditions concerning the route length, number of turns and zones without bus stops. Original road network data were generated and processed adopting a geographic information systems (GIS), and these are used to search for the optimal route for railway replacement buses adopting the improved ACO concerning the 8 zones on the target railway line (JR Kakogawa line). By comparing the improved ACO with Dijkstra’s algorithm, its relevance was verified and areas needing further improvements were revealed.展开更多
Purpose–In order to systematically grasp the changes and matching characteristics of wheel and rail profiles of high speed railway(HSR)in China,172 rail profile measurement points and 384 wheels of 6 high-speed elect...Purpose–In order to systematically grasp the changes and matching characteristics of wheel and rail profiles of high speed railway(HSR)in China,172 rail profile measurement points and 384 wheels of 6 high-speed electric motive unites(EMUs)were selected on 6 typical HSR lines,including Beijing–Shanghai,Wuhan–Guangzhou,Harbin–Dalian,Lanzhou–Xinjiang,Guiyang–Guangzhou and Dandong–Dalian for a two-year field test.Design/methodology/approach–Based on the measured data,the characteristics of rail and wheel wear were analyzed by mathematical statistics method.The equivalent conicity of wheel and rail matching in a wheel reprofiling cycle was analyzed by using the measured rail profile.Findings–Results showed that when the curve radius of HSR was larger than 2,495 m,the wear rate of straight line and curve rail was almost the same.For the line with annual traffic gross weight less than 11 Mt,the vertical wear of rail was less than 0.01 mm.The wear rate of the rail with the curve radius less than 800 m increased obviously.The wheel tread wear of EMUs on Harbin–Dalian line,Lanzhou–Xinjiang line and Dandong–Dalian line was relatively large,and the average wear rate of tread was about 0.05–0.06 mm$(10,000 km)1,while that of Beijing–Shanghai line,Wuhan–Guangzhou line and Guiyang–Guangzhou line was about 0.03–0.035 mm$(10,000 km)1.When the wear range was small,the equivalent conicity increased with the increase of wheel tread wear.When the wear range of wheel was wide,the wheel–rail contact points were evenly distributed,and the equivalent conicity did not increase obviously.Originality/value–This research proposes the distribution range of the equivalent conicity in one reprofiling cycle of various EMU trains,which provides guidance for the condition-based wheel reprofiling.展开更多
Image method is used in this paper to calculate the value of magnetic field near high-voltage transmission lines and electric railways. Areas in which the magnetic field is less than 0.002 Gauss are given and the magn...Image method is used in this paper to calculate the value of magnetic field near high-voltage transmission lines and electric railways. Areas in which the magnetic field is less than 0.002 Gauss are given and the magnetic pollution of high-voltage power transmission lines and electric railways is discussed展开更多
Line planning is the first important strategic element in the railway operation planning process,which will directly affect the successive planning to determine the efficiency of the whole railway system.A two-layer o...Line planning is the first important strategic element in the railway operation planning process,which will directly affect the successive planning to determine the efficiency of the whole railway system.A two-layer optimization model is proposed within a simulation framework to deal with the high-speed railway (HSR) line planning problem.In the model,the top layer aims at achieving an optimal stop-schedule set with the service frequencies,and is formulated as a nonlinear program,solved by genetic algorithm.The objective of top layer is tominimize the total operation cost and unserved passenger volume.Given a specific stop-schedule,the bottom layer focuses on weighted passenger flow assignment,formulated as a mixed integer program with the objective of maximizing the served passenger volume andminimizing the total travel time for all passengers.The case study on Taiwan HSR shows that the proposed two-layer model is better than the existing techniques.In addition,this model is also illustrated with the Beijing-Shanghai HSR in China.The result shows that the two-layer optimization model can reduce computation complexity and that an optimal set of stop-schedules can always be generated with less calculation time.展开更多
Turnouts are in close proximity to each other in the stations of high-speed railway.The stress and deformation of those turnouts which are laid nearby are influenced mutually and therefore those turnouts should be con...Turnouts are in close proximity to each other in the stations of high-speed railway.The stress and deformation of those turnouts which are laid nearby are influenced mutually and therefore those turnouts should be considered together.On the basis of finite element method,according to No.18 jointless turnout with swing nose frog in the ballasted track of high-speed railway,a finite element calculating model of jointless turnout group coupling the longitudinal,lateral and vertical directions is established.The influencing factors,for instance the number of turnouts,connection form,length of intermediate straight line and ballast bed longitudinal resistance,on the mechanical characteristics of turnout,transverse deformation of switch rail and range of rail temperature for laying turnout are analyzed in this paper.The results show that more turnouts result in more obvious interaction between them when the lengths of intermediate straight line are the same;more significant influence between the turnouts with the connection form of head-to-head is produced compared to that of head-to-end;from the perspective of statics,influence between turnouts could be ignored basically if the intermediate straight line is over 50 m;bigger longitudinal resistance of ballast bed leads to less influence between the turnouts.展开更多
基金Project(2014JBZ012)supported by the Fundamental Research Funds for the Central Universities,China
文摘Taking the development of high-speed railway in China as background, and referring to the dynamic theory and wheel-rail contact mode, dynamic analysis model was established, considering the setting position of straight lines and running conditions of train in high-speed railway station yard. Using the established model, and choosing vehicle lateral acceleration and wheel suspension as the evaluation indexes, dynamic characteristic of vehicle traveling in turnout and adjacent area on main line was analyzed, and effects on travelling safety and stability of train aroused by length variation of straight lines were calculated based on analyzing the damping rules of vibration. The results show that, a certain length of straight lines can alleviate the vibration aroused in turnout and curve(turnout), length of straight lines connecting turnouts in different sections on main line was proposed to meet the demand of traveling stability, and shortening or cancelation of straight line for the scale limitation of station yard has less influence on operation safety of train.
文摘In this paper, a method of railway line surveying system is proposed. This method can reduce the labour intensity in railway line surveying. It also can improve the work efficiency and overcome the obstruction to the ordinary operation of railways.
文摘In order to address the issues of complex system structure and variable selection difficulty for the current heavy haul railway line status evaluation system, a three-category and three-layer heavy-haul line status evaluation variable set construction and reduction optimization method is proposed. Firstly, the status of heavy haul railway line is analyzed, and an initial set of evaluation variables affecting the line status is constructed. Then, based on the association rule and the principal component analysis method, key variables are extracted from the initial variable set to establish the evaluation system. Finally, this method is verified with actual data of a line. The results show that the service performance of heavy haul railway line can still be evaluated accurately when the evaluation variables are reduced by 60% in the proposed method.
基金China State Railway Group Co.,Ltd(No.K2023X030)China Academy of Railway Sciences Corporation Limited(No.2021YJ017).
文摘Purpose–Revenue management(RM)is a significant technique to improve revenue with limited resources.With the macro environment of dramatically increasing transit capacity and rapid railway transport development in China,it is necessary to involve the theory of RM into the operation and decision of railway passenger transport.Design/methodology/approach–This paper proposes the theory and framework of generalized RM of railway passenger transport(RMRPT),and the thoughts and methods of the main techniques in RMRPT,involving demand forecasting,line planning,inventory control,pricing strategies and information systems,are all studied and elaborated.The involved methods and techniques provide a sequential process to help with the decision-making for each stage of RMRPT.The corresponding techniques are integrated into the information system to support practical businesses in railway passenger transport.Findings–The combination of the whole techniques devotes to railway benefit improvement and transit resource utilization and has been applied into the practical operation and organization of railway passenger transport.Originality/value–The development of RMRPT would provide theoretical and technical support for the improvement of service quality as well as railway benefits and efficiency.
基金Project(51108463) supported by the National Natural Science Foundation of ChinaProject(11B041) supported by Scientific Research Fund of Hunan Provincial Education Department of ChinaProject(NCET-10-0839) supported by Ministry Education of China
文摘The railway tunnel concrete lining exposed to sulfate-bearing groundwater beyond 40 years in southwest of China was investigated. Field investigation, sulfate ions content and corroded products analysis, macro/microscopic test were carried out. Results show that under the tunnel concrete lining structure and its served environmental conditions, sulfate solutions permeate concrete lining and accumulate on windward-side of concrete lining, resulting in the increase of sulfate ions content on windward-side and the diffusion of sulfate ions from windward-side to waterward-side, which cause the concrete lining of windward-side damaged seriously but the waterward-side of concrete lining is still in perfect condition. It is confirmed that structural characteristic of tunnel and environmental conditions lead to physical attack with the leaching of concrete and sodium sulfate crystallization as well as chemical corrosion with formation of gypsum in high sulfate concentration and formation of thaumasite in proper temperature rather than formation of ettringite. These achievements can provide academic and technical supports for understanding the deterioration mechanism of concrete lining as well as constructing railway tunnel under sulfate attack.
基金Supported by Country Innovative Fund Project(05C26112200399)
文摘The 2DOF dynamic equations of the doable railway suspended vehicle for automatic transportation in the welding shop are established. The sensitivities are analyzed. The parameter design is researched in ADAMS in terms of the inner railway radius, wheelbase, gauge, girder length of the doable railway suspended vehicle for automatic transportation in the welding product line. The mutual-restriction among the design variables is discussed and the selective ranges of the variables are confirmed. The result shows that the stability of the doable railway suspended vehicle for automatic transportation in the welding product line depends on parameters of the inner railway radius, wheelbase, gauge, girder length. The optimal results of the optimal objective and design variables have research significance for the virtual prototype of the doable suspension railway automation vehicle. The optimal results are input into the simulation model iteratively and the simulation results are fed back to the physical prototype. The veracity and reliability of peoformance forecast are improved so that the manufacture cost of the doable suspension railway automation vehicle is reduced significantly.
基金Joint Funds of National Natural Science Foundation of China(No.U1134208)National Key Basic Research Program of China(No.2010CB732105)National Natural Science Foundation of China(No.50925830,No.51208432)
文摘Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shield tunnel structure test system". And the mechanical characteristics of segmental lining structure using straight assembling and staggered assembling were studied deeply. The results showed that, the mechanical characteristics of segmental lining structure varied with the water pressures; especially after cracking, the high water pressure played a significant role in slowing down the growing inner force and deformation. It also testi- fied that the failure characteristics varied with straight assembling structure and staggered assembling structure. Shear thilurc often occurred near longitudinal seam when using straight assembling.
文摘Various technologies have recently been developed for high-speed railways, in order to boost commercial speeds from 300 km.h: to 400 km.h-1. Among these technologies, this paper introduces the 400 km-h-1 class current collection performance evaluation methods that have been developed and demonstrated by Korea. Specifically, this paper reports details of the video-based monitoring techniques that have been adopted to inspect the stability of overhead contact line (OCL) components at 400 km.h-1 without direct contact with any components of the power supply system. Unlike conventional OCL monitoring systems, which detect contact wire positions using either laser sensors or line cameras, the developed system measures parameters in the active state by video data. According to experimental results that were obtained at a field-test site established at a commercial line, it is claimed that the proposed mea- surement system is capable of effectively measuring OCL parameters.
文摘Datong-Qinhuangdao line, as the first electrified double-track heavy-haul line dedicated to coal transport in China, extends from Datong in the west, and reaches Qinhuangdao in the east, opened to traffic in December, 1992, totaling 653 km with the designed annual traffic volume of 1×108 t. In order to meet the demands of national economic development, the transport capacity of the line must be enhanced greatly. Depending on independent innovation, MOR, for the first time in the world,realizes the integration between GSM-R and Locotrol, the integration between 800 MHz digital radio and Locotrol, and the integration between a single set of Locotrol and SS4 locomotive. Meanwhile, CR develops equipment portfolio for heavy-haul through combining 2 high power locomotives of HXD series (means harmony) with controllable EOT. Relying on integration and innovation, it succeeds in operating 20 kt-level combined heavy-haul train on Datong-Qinhuangdao line, which tripled the annual traffic volume of the line from 1×108 t in 2002 to 3×108 t in 2007.
文摘1. Review of railway work in 1996 The year 1996 was an important year for China’s railways in facing a historic turning point—— committing itself to a programme of structural re-
文摘In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the discontinuation of local railway lines and introduce replacement buses to secure the transportation methods of the local people especially in rural areas. Based on the above background, targeting local railway lines that may be discontinued in the near future, appropriate bus stops when provided with potential bus stops were selected, the present study proposed a method that introduces routes for railway replacement buses adopting ant colony optimization (ACO). The improved ACO was designed and developed based on the requirements set concerning the route length, number of turns, road width, accessibility of railway lines and zones without bus stops as well as the constraint conditions concerning the route length, number of turns and zones without bus stops. Original road network data were generated and processed adopting a geographic information systems (GIS), and these are used to search for the optimal route for railway replacement buses adopting the improved ACO concerning the 8 zones on the target railway line (JR Kakogawa line). By comparing the improved ACO with Dijkstra’s algorithm, its relevance was verified and areas needing further improvements were revealed.
基金supported by the China Academy of Railway Sciences Corporation Limited(Grant no.2019YJ162).
文摘Purpose–In order to systematically grasp the changes and matching characteristics of wheel and rail profiles of high speed railway(HSR)in China,172 rail profile measurement points and 384 wheels of 6 high-speed electric motive unites(EMUs)were selected on 6 typical HSR lines,including Beijing–Shanghai,Wuhan–Guangzhou,Harbin–Dalian,Lanzhou–Xinjiang,Guiyang–Guangzhou and Dandong–Dalian for a two-year field test.Design/methodology/approach–Based on the measured data,the characteristics of rail and wheel wear were analyzed by mathematical statistics method.The equivalent conicity of wheel and rail matching in a wheel reprofiling cycle was analyzed by using the measured rail profile.Findings–Results showed that when the curve radius of HSR was larger than 2,495 m,the wear rate of straight line and curve rail was almost the same.For the line with annual traffic gross weight less than 11 Mt,the vertical wear of rail was less than 0.01 mm.The wear rate of the rail with the curve radius less than 800 m increased obviously.The wheel tread wear of EMUs on Harbin–Dalian line,Lanzhou–Xinjiang line and Dandong–Dalian line was relatively large,and the average wear rate of tread was about 0.05–0.06 mm$(10,000 km)1,while that of Beijing–Shanghai line,Wuhan–Guangzhou line and Guiyang–Guangzhou line was about 0.03–0.035 mm$(10,000 km)1.When the wear range was small,the equivalent conicity increased with the increase of wheel tread wear.When the wear range of wheel was wide,the wheel–rail contact points were evenly distributed,and the equivalent conicity did not increase obviously.Originality/value–This research proposes the distribution range of the equivalent conicity in one reprofiling cycle of various EMU trains,which provides guidance for the condition-based wheel reprofiling.
文摘Image method is used in this paper to calculate the value of magnetic field near high-voltage transmission lines and electric railways. Areas in which the magnetic field is less than 0.002 Gauss are given and the magnetic pollution of high-voltage power transmission lines and electric railways is discussed
基金Project supported by the National Natural Science Foundation of China(No.61074151)the National Key Technology R&D Program of China(Nos.2008BAG11B01 and 2009BAG12A10)+1 种基金the Research Fund of the State Key Laboratory of Rail Traffic Control and Safety(Nos.RCS2008ZZ003 and RCS2009ZT002)the Research Fund of Beijing Jiaotong University(No.2011YJS035),China
文摘Line planning is the first important strategic element in the railway operation planning process,which will directly affect the successive planning to determine the efficiency of the whole railway system.A two-layer optimization model is proposed within a simulation framework to deal with the high-speed railway (HSR) line planning problem.In the model,the top layer aims at achieving an optimal stop-schedule set with the service frequencies,and is formulated as a nonlinear program,solved by genetic algorithm.The objective of top layer is tominimize the total operation cost and unserved passenger volume.Given a specific stop-schedule,the bottom layer focuses on weighted passenger flow assignment,formulated as a mixed integer program with the objective of maximizing the served passenger volume andminimizing the total travel time for all passengers.The case study on Taiwan HSR shows that the proposed two-layer model is better than the existing techniques.In addition,this model is also illustrated with the Beijing-Shanghai HSR in China.The result shows that the two-layer optimization model can reduce computation complexity and that an optimal set of stop-schedules can always be generated with less calculation time.
基金supported by the National Natural Science Foundation-High Speed Railway Joint Fund of China (Grant No. U1234211)the National Natural Science Foundation of China (Grant No. 51108025)the Ministry of Railways Science and Technology Research Development Major Project of China (Grant Nos. 2010G018-D-2 and2011G014-D)
文摘Turnouts are in close proximity to each other in the stations of high-speed railway.The stress and deformation of those turnouts which are laid nearby are influenced mutually and therefore those turnouts should be considered together.On the basis of finite element method,according to No.18 jointless turnout with swing nose frog in the ballasted track of high-speed railway,a finite element calculating model of jointless turnout group coupling the longitudinal,lateral and vertical directions is established.The influencing factors,for instance the number of turnouts,connection form,length of intermediate straight line and ballast bed longitudinal resistance,on the mechanical characteristics of turnout,transverse deformation of switch rail and range of rail temperature for laying turnout are analyzed in this paper.The results show that more turnouts result in more obvious interaction between them when the lengths of intermediate straight line are the same;more significant influence between the turnouts with the connection form of head-to-head is produced compared to that of head-to-end;from the perspective of statics,influence between turnouts could be ignored basically if the intermediate straight line is over 50 m;bigger longitudinal resistance of ballast bed leads to less influence between the turnouts.