Up till now,no systematic studies on railway route selection in urban areas,HSR route selection in particular,have been taken in China.Based on the Shenzhen Railway Terminal Project and the Shenzhen-Shanwei Railway Pr...Up till now,no systematic studies on railway route selection in urban areas,HSR route selection in particular,have been taken in China.Based on the Shenzhen Railway Terminal Project and the Shenzhen-Shanwei Railway Project,research on HSR route selection in complicated urban areas has been conducted.An optimal route selection plan is determined after studying the local geological and environmental conditions and the complexity of tunnel construction.The research concludes that there are four major concerns in HSR route selection:the match between the new route and the urban planning,the potential economic return for the massive investment,the likely impacts of land expropriation on social stability,and the best synthesis of multiple controlling factors to meet the HSR standard.Moreover,six principles should be followed in railway route selection in complicated urban areas:the new route should be in alignment with the railway deployment;the route should align with the existing passage as much as possible;extensive analysis and in-depth demonstrations should be done to find the most appropriate combination of open and hidden excavation in tunnel construction;geological conditions and tunnel construction complexities are among the priorities;environmental sensitive sites and environmental vibration noise should be avoided as much as possible;special attention should be paid to the relocation of the power supply,television and communication facilities and the rearrangement of tubes and wires.展开更多
The Cheng-Lan railway links Chengdu, a central city in Southwestern China, and Lanzhou, a central city in Northwestern China. The railway passes through the Longmenshan fault zone (Wenchuan earthquake happened there o...The Cheng-Lan railway links Chengdu, a central city in Southwestern China, and Lanzhou, a central city in Northwestern China. The railway passes through the Longmenshan fault zone (Wenchuan earthquake happened there on May 12, 2008), Minjiang fault zone, and Dongkunlun fault zone, which are all active. It runs over the Yangtze River and the Yellow River, and crosses high mountains and deep valleys. There exists, along the railway's alignment, different kinds of strata of hard granite and soft, weak metamorphic rocks such as carbonaceous slate, schist, and phyllite. It is, therefore, a key issue for such an infrastructure construction to assess the engineering geological conditions and risks, so as to mitigate or avoid possible georisks and to offer optional designs. Geological survey and georisk assessment along the railway corridor are carried out. Special attention is given to active faults, earthquakes and seismic zones. Based on these, discussions about geological aspects for route selection of the railway are conducted and countermeasures for georisk control are proposed accordingly. Main conclusions are achieved as follows: (1) Geohazards such as landslides, rockfalls and debries flows dominate both the route selection of the railway and the engineering structures (e.g., tunnels or bridges) adopted; (2) Tunnel has been proved to be an excellent structure for linear engineering in geologically active area; and (3) In the case where avoiding is impractical, necessary protection measures should be taken to engineering slopes in high earthquake intensity areas, especially the area with earthquake of Ms. 8 or greater.展开更多
文摘Up till now,no systematic studies on railway route selection in urban areas,HSR route selection in particular,have been taken in China.Based on the Shenzhen Railway Terminal Project and the Shenzhen-Shanwei Railway Project,research on HSR route selection in complicated urban areas has been conducted.An optimal route selection plan is determined after studying the local geological and environmental conditions and the complexity of tunnel construction.The research concludes that there are four major concerns in HSR route selection:the match between the new route and the urban planning,the potential economic return for the massive investment,the likely impacts of land expropriation on social stability,and the best synthesis of multiple controlling factors to meet the HSR standard.Moreover,six principles should be followed in railway route selection in complicated urban areas:the new route should be in alignment with the railway deployment;the route should align with the existing passage as much as possible;extensive analysis and in-depth demonstrations should be done to find the most appropriate combination of open and hidden excavation in tunnel construction;geological conditions and tunnel construction complexities are among the priorities;environmental sensitive sites and environmental vibration noise should be avoided as much as possible;special attention should be paid to the relocation of the power supply,television and communication facilities and the rearrangement of tubes and wires.
基金supported by a grant from the Major State Basic Research Development Program of China(973Program)(Grant No.2013CB733202)the team research fund of the State Key Laboratory of Geohazards Prevention and Geoenvironment Protection(Grant No.SKLGP)
文摘The Cheng-Lan railway links Chengdu, a central city in Southwestern China, and Lanzhou, a central city in Northwestern China. The railway passes through the Longmenshan fault zone (Wenchuan earthquake happened there on May 12, 2008), Minjiang fault zone, and Dongkunlun fault zone, which are all active. It runs over the Yangtze River and the Yellow River, and crosses high mountains and deep valleys. There exists, along the railway's alignment, different kinds of strata of hard granite and soft, weak metamorphic rocks such as carbonaceous slate, schist, and phyllite. It is, therefore, a key issue for such an infrastructure construction to assess the engineering geological conditions and risks, so as to mitigate or avoid possible georisks and to offer optional designs. Geological survey and georisk assessment along the railway corridor are carried out. Special attention is given to active faults, earthquakes and seismic zones. Based on these, discussions about geological aspects for route selection of the railway are conducted and countermeasures for georisk control are proposed accordingly. Main conclusions are achieved as follows: (1) Geohazards such as landslides, rockfalls and debries flows dominate both the route selection of the railway and the engineering structures (e.g., tunnels or bridges) adopted; (2) Tunnel has been proved to be an excellent structure for linear engineering in geologically active area; and (3) In the case where avoiding is impractical, necessary protection measures should be taken to engineering slopes in high earthquake intensity areas, especially the area with earthquake of Ms. 8 or greater.