In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
The railway vehicle gearbox is an important part of the railway vehicle traction transmission system which ensures the smooth running of railway vehicles.However,as the running speed of railway vehicles continues to i...The railway vehicle gearbox is an important part of the railway vehicle traction transmission system which ensures the smooth running of railway vehicles.However,as the running speed of railway vehicles continues to increase,the railway vehicle gearbox is exposed to a more demanding operating environment.Under both internal and external excitations,the gearbox is prone to faults such as fatigue cracks,and broken teeth.It is crucial to detect these faults before they result in severe failures and accidents.Therefore,understanding the dynamics and fault diagnosis of railway vehicle gearbox is needed.At present,there is a lack of systematic review of railway vehicle gearbox dynamics and fault diagnosis.So,this paper systematically summarizes the research progress on railway vehicle gearbox dynamics and fault diagnosis.To this end,this paper first summarizes the latest research progress on the dynamics of railway vehicle gearboxes.The dynamics and vibration characteristics of the gearbox are summarized under internal and external excitations,as well as faulty conditions.Then,the stateof-the-art signal processing and artificial intelligence methods for fault diagnosis of railway vehicle gearboxes are reviewed.In the end,future research prospects are given.展开更多
Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new...Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching.This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.Design/methodology/approach–This paper first briefly introduces the functions and configuration of the intelligent CTC system.Some new servers,terminals and interfaces are introduced,which are plan adjustment server/terminal,interface for automatic train operation(ATO),interface for Dynamic Monitoring System of Train Control Equipment(DMS),interface for Power Supervisory Control and Data Acquisition(PSCADA),interface for Disaster Monitoring,etc.Findings–The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans,safety control of train routes and commands,traffic information data platform,integrated simulation of traffic dispatching and ATO function.These technologies have been applied in the Beijing-Zhangjiakou HSR,which commenced operations at the end of 2019.Implementing these key intelligent functions has improved the train dispatching command capacity,ensured the safe operation of intelligent HSR,reduced the labor intensity of dispatching operators and enhanced the intelligence level of China’s dispatching system.Originality/value–This paper provides further challenges and research directions for the intelligent dispatching command of HSR.To achieve the objectives,new measures need to be conducted,including the development of advanced technologies for intelligent dispatching command,coping with new requirements with the development of China’s railway signaling system,the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.展开更多
The mining industry consumes an enormous amount of energy globally,the main part of which is conservable.Diesel is a key source of energy in mining operations,and mine locomotives have significant diesel consumption.T...The mining industry consumes an enormous amount of energy globally,the main part of which is conservable.Diesel is a key source of energy in mining operations,and mine locomotives have significant diesel consumption.Train speed has been recognized as the primary parameter affecting locomotive fuel consumption.In this study,an artificial intelligence(AI)look-forward control is developed as an online method for energy-efficiency improvement in mine-railway operation.An AI controller will modify the desired train-speed profile by accounting for the grade resistance and speed limits of the route ahead.Travel-time increment is applied as an improvement constraint.Recent models for mine-train-movement simulation have estimated locomotive fuel burn using an indirect index.An AI-developed algorithm for mine-train-movement simulation can correctly predict locomotive diesel consumption based on the considered values of the transfer parameters in this paper.This algorithm finds the mine-locomotive subsystems,and satisfies the practical diesel-consumption data specified in the locomotive’s manufacturer catalog.The model developed in this study has two main sections designed to estimate locomotive fuel consumption in different situations by using an artificial neural network(ANN),and an optimization section that applies a genetic algorithm(GA)to optimize train speed for the purpose of minimizing locomotive diesel consumption.The AI model proposed in this paper is learned and validated using real datasets collected from a mine-railway route in Western Australia.The simulation of a mine train with a commonly used locomotive in Australia GeneralMotors SD40-2(GM SD40-2)on a local railway track illustrates a significant reduction in diesel consumption along with a satisfactory travel-time increment.The simulation results also demonstrate that the AI look-forward controller has faster calculations than control systems based that use dynamic programming.展开更多
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.
基金sponsored by the National Natural Science Foundation of China(Grant#52375115)Shanghai Rising-Star Program(Grant#22YF1450500)Fundamental Research Funds for the Central Universities.Reviewers’and the editor’s efforts are also much appreciated.
文摘The railway vehicle gearbox is an important part of the railway vehicle traction transmission system which ensures the smooth running of railway vehicles.However,as the running speed of railway vehicles continues to increase,the railway vehicle gearbox is exposed to a more demanding operating environment.Under both internal and external excitations,the gearbox is prone to faults such as fatigue cracks,and broken teeth.It is crucial to detect these faults before they result in severe failures and accidents.Therefore,understanding the dynamics and fault diagnosis of railway vehicle gearbox is needed.At present,there is a lack of systematic review of railway vehicle gearbox dynamics and fault diagnosis.So,this paper systematically summarizes the research progress on railway vehicle gearbox dynamics and fault diagnosis.To this end,this paper first summarizes the latest research progress on the dynamics of railway vehicle gearboxes.The dynamics and vibration characteristics of the gearbox are summarized under internal and external excitations,as well as faulty conditions.Then,the stateof-the-art signal processing and artificial intelligence methods for fault diagnosis of railway vehicle gearboxes are reviewed.In the end,future research prospects are given.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62203468Young Elite Scientist Sponsorship Program by CAST under Grant 2022QNRC001+1 种基金Foundation of China State Railway Group Co.,Ltd.under Grant K2021X001Foundation of China Academy of Railway Sciences Corporation Limited under Grant 2021YJ315.
文摘Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching.This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.Design/methodology/approach–This paper first briefly introduces the functions and configuration of the intelligent CTC system.Some new servers,terminals and interfaces are introduced,which are plan adjustment server/terminal,interface for automatic train operation(ATO),interface for Dynamic Monitoring System of Train Control Equipment(DMS),interface for Power Supervisory Control and Data Acquisition(PSCADA),interface for Disaster Monitoring,etc.Findings–The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans,safety control of train routes and commands,traffic information data platform,integrated simulation of traffic dispatching and ATO function.These technologies have been applied in the Beijing-Zhangjiakou HSR,which commenced operations at the end of 2019.Implementing these key intelligent functions has improved the train dispatching command capacity,ensured the safe operation of intelligent HSR,reduced the labor intensity of dispatching operators and enhanced the intelligence level of China’s dispatching system.Originality/value–This paper provides further challenges and research directions for the intelligent dispatching command of HSR.To achieve the objectives,new measures need to be conducted,including the development of advanced technologies for intelligent dispatching command,coping with new requirements with the development of China’s railway signaling system,the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.
文摘The mining industry consumes an enormous amount of energy globally,the main part of which is conservable.Diesel is a key source of energy in mining operations,and mine locomotives have significant diesel consumption.Train speed has been recognized as the primary parameter affecting locomotive fuel consumption.In this study,an artificial intelligence(AI)look-forward control is developed as an online method for energy-efficiency improvement in mine-railway operation.An AI controller will modify the desired train-speed profile by accounting for the grade resistance and speed limits of the route ahead.Travel-time increment is applied as an improvement constraint.Recent models for mine-train-movement simulation have estimated locomotive fuel burn using an indirect index.An AI-developed algorithm for mine-train-movement simulation can correctly predict locomotive diesel consumption based on the considered values of the transfer parameters in this paper.This algorithm finds the mine-locomotive subsystems,and satisfies the practical diesel-consumption data specified in the locomotive’s manufacturer catalog.The model developed in this study has two main sections designed to estimate locomotive fuel consumption in different situations by using an artificial neural network(ANN),and an optimization section that applies a genetic algorithm(GA)to optimize train speed for the purpose of minimizing locomotive diesel consumption.The AI model proposed in this paper is learned and validated using real datasets collected from a mine-railway route in Western Australia.The simulation of a mine train with a commonly used locomotive in Australia GeneralMotors SD40-2(GM SD40-2)on a local railway track illustrates a significant reduction in diesel consumption along with a satisfactory travel-time increment.The simulation results also demonstrate that the AI look-forward controller has faster calculations than control systems based that use dynamic programming.