期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Fault Diagnosis Scheme for Railway Switch Machine Using Multi-Sensor Fusion Tensor Machine
1
作者 Chen Chen Zhongwei Xu +2 位作者 Meng Mei Kai Huang Siu Ming Lo 《Computers, Materials & Continua》 SCIE EI 2024年第6期4533-4549,共17页
Railway switch machine is essential for maintaining the safety and punctuality of train operations.A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitori... Railway switch machine is essential for maintaining the safety and punctuality of train operations.A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitoring data is developed herein.Unlike existing methods,this approach takes into account the spatial information of the time series monitoring data,aligning with the domain expertise of on-site manual monitoring.Besides,a multi-sensor fusion tensor machine is designed to improve single signal data’s limitations in insufficient information.First,one-dimensional signal data is preprocessed and transformed into two-dimensional images.Afterward,the fusion feature tensor is created by utilizing the images of the three-phase current and employing the CANDE-COMP/PARAFAC(CP)decomposition method.Then,the tensor learning-based model is built using the extracted fusion feature tensor.The developed fault diagnosis scheme is valid with the field three-phase current dataset.The experiment indicates an enhanced performance of the developed fault diagnosis scheme over the current approach,particularly in terms of recall,precision,and F1-score. 展开更多
关键词 railway switch machine tensor machine fault diagnosis
下载PDF
A framework for dynamic modelling of railway track switches considering the switch blades,actuators and control systems
2
作者 Saikat Dutta Tim Harrison +2 位作者 Christopher Ward Roger Dixon Phil Winship 《Railway Engineering Science》 EI 2024年第2期162-176,共15页
The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital... The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment.This is important because,globally,railway track switches are used to allow trains to change routes;they are a key part of all railway networks.However,because track switches are single points of failure and safety-critical,their inability to operate correctly can cause significant delays and concomitant costs.In order to better understand the dynamic behaviour of switches during operation,this paper has developed a full simulation twin of a complete track switch system.The approach fuses finite element for the rail bending and motion,with physics-based models of the electromechanical actuator system and the control system.Hence,it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built.This is useful for looking at the modification or monitoring of existing switches,and it becomes even more important when new switch concepts are being considered and evaluated.The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively.The paper describes the modelling approach,demonstrates the methodology by developing the system model for a novel“REPOINT”switch system,and evaluates the system level performance against the dynamic performance requirements for the switch.In the context of that case study,it is found that the proposed new actuation system as designed can meet(and exceed)the system performance requirements,and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure. 展开更多
关键词 railway track switch Mathematical modelling Redundant actuation Finite element analysis
下载PDF
Railway switch fault diagnosis based on Multi-heads Channel Self Attention,Residual Connection and Deep CNN 被引量:1
3
作者 Xirui Chen Hui Liu Zhu Duan 《Transportation Safety and Environment》 EI 2023年第1期58-65,共8页
A novel switch diagnosis method based on self-attention and residual deep convolutional neural networks(CNNs)is proposed.Because of the imbalanced dataset,the K-means synthetic minority oversampling technique(SMOTE)is... A novel switch diagnosis method based on self-attention and residual deep convolutional neural networks(CNNs)is proposed.Because of the imbalanced dataset,the K-means synthetic minority oversampling technique(SMOTE)is applied to balancing the dataset at first.Then,the deep CNN is utilized to extract local features from long power curves,and the residual connection is performed to handle the performance degeneration.In the end,the multi-heads channel self attention focuses on those important local features.The ablation and comparison experiments are applied to verifying the effectiveness of the proposed methods.With the residual connection and multi-heads channel self attention,the proposed method has achieved an impressive accuracy of 99.83%.The t-SNE based visualizations for features of the middle layers enhance the trustworthiness. 展开更多
关键词 fault diagnosis railway switch residual connection channel self-attention deep convolutional neural network
原文传递
FBG Stress-Sensibilized Monitor for Railway Switch Pole On-Line Monitoring
4
作者 Weilai LI Jie LIU +2 位作者 Jianjun PAN Jin PANG Xiaoshan LU 《Photonic Sensors》 SCIE EI CAS 2014年第3期269-273,共5页
The fiber Bragg grating (FBG) sensing technology is used to dynamically monitor multiple parameters of railway switch machine poles, including time of movement, direction and quantity of loading and locking force, a... The fiber Bragg grating (FBG) sensing technology is used to dynamically monitor multiple parameters of railway switch machine poles, including time of movement, direction and quantity of loading and locking force, and states of loading resistance. This paper presents the design and implementation of a railway switch pole strain on-line monitoring system based on the FBG stress-sensibilized monitor for a Siemens S700K switch machine. The ring shape FBG strain gauge and stress-sensibilized methods significantly increased the monitoring sensitivity. Installing approaches adapted the harsh environment in the railway application. The monitoring results showed the high sensitivity and high reliability of this monitoring system. This application provides a long-term and on-line detecting method which could meet railway switch condition monitoring demands of more than 100,000 switch machines in the country. 展开更多
关键词 Fiber Bragg grating railway switch POLE strain dynamically monitor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部