Based on the factors impact strength model(FISM), we studied on calculation formulas of influence strength and key elements of FISM, and analyzed the turnover time of railway freight transportation of China. The resul...Based on the factors impact strength model(FISM), we studied on calculation formulas of influence strength and key elements of FISM, and analyzed the turnover time of railway freight transportation of China. The results show that wagon transfer time is the most critical factor among the three subjective factors of wagons turnover time. The FISM based analysis of wagon transfer time show that the wagon turnover time is significantly correlated with transit time with resorting. Among the seven factors of detention time of transit time with resorting, the time of waiting to departing, converging, and waiting to break-up are key factors, while the time of make-up, break-up, arrival and departure are general factors. We carried out one empirical research based on the data of Baoji East Railway Station in 2015. The results of empirical research and FISM are consistent completely.展开更多
This paper obtains a generalized tunneling time of one-dimensional potentials via time reversal invariance. It also proposes a simple explanation for the Hartman effect using the useful concept of the scattered subwaves.
Using an algebraic approach, it is possible to obtain the temporal evolution wave function for a Gaussian wavepacket obeying the quadratic time-dependent Hamiltonian(QTDH). However, in general, most of the practical c...Using an algebraic approach, it is possible to obtain the temporal evolution wave function for a Gaussian wavepacket obeying the quadratic time-dependent Hamiltonian(QTDH). However, in general, most of the practical cases are not exactly solvable, for we need general solutions of the Riccatti equations which are not generally known. We therefore bypass directly solving for the temporal evolution wave function, and study its inverse problem. We start with a particular evolution of the wave-packet, and get the required Hamiltonian by using the inverse method. The inverse approach opens up a new way to find new exact solutions to the QTDH. Some typical examples are studied in detail. For a specific timedependent periodic harmonic oscillator, the Berry phase is obtained exactly.展开更多
In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wa...In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wave number domain and with a 2.5D approach.Three-dimensional numerical models formulated in the time/space domain are less frequently used,mainly due to their high computational cost.Notwithstanding,these models present very attractive characteristics,such as the possibility of considering nonlinear behaviors or the modelling of excess pore pressure and non-homogeneous and non-periodic geometries in the longitudinal direction of the track.In this study,two 3D numerical approaches formulated in the time/space domain are compared and experimentally validated.The first one consists of a finite element approach and the second one of a finite difference approach.The experimental validation in an actual case situated in Carregado(Portugal)shows an acceptable fitting between the numerical results and the actual measurements for both models.However,there are some differences among them.This study therefore includes some recommendations for their use in practical soil dynamics and geotechnical engineering.展开更多
With tremendous advances in modem techniques, Einstein's general rela- tivity has become an inevitable part of deep space missions. We investigate the rela- tivistic algorithm for time transfer between the proper tim...With tremendous advances in modem techniques, Einstein's general rela- tivity has become an inevitable part of deep space missions. We investigate the rela- tivistic algorithm for time transfer between the proper time - of the onboard clock and the Geocentric Coordinate Time, which extends some previous works by including the effects of propagation of electromagnetic signals. In order to evaluate the implicit algebraic equations and integrals in the model, we take an analytic approach to work out their approximate values. This analytic model might be used in an onboard com- puter because of its limited capability to perform calculations. Taking an orbiter like Yinghuo-1 as an example, we find that the contributions of the Sun, the ground station and the spacecraft dominate the outcomes of the relativistic corrections to the model.展开更多
In this paper, the analytical transfer matrix method (ATMM) is applied to study the properties of quantum reflection in three systems: a sech2 barrier, a ramp potential and an inverse harmonic oscillator. Our resul...In this paper, the analytical transfer matrix method (ATMM) is applied to study the properties of quantum reflection in three systems: a sech2 barrier, a ramp potential and an inverse harmonic oscillator. Our results agree with those obtained by Landau and Lifshitz [Landau L D and Lifshitz E M 1977 Quantum Mechanics (Non-relativistic Theory) (New York: Pergamon)], which proves that ATMM is a simple and effective method for quantum reflection.展开更多
This paper studies a continuous time queueing system with multiple types of customers and a first-come-first-served service discipline. Customers arrive according to a semi-Markov arrival process and the service times...This paper studies a continuous time queueing system with multiple types of customers and a first-come-first-served service discipline. Customers arrive according to a semi-Markov arrival process and the service times of individual types of customers have PH-distributios. A GI/M/1 type Markov process for a generalized age process of batches of customers is constructed. The stationary distribution of the GI/M/1 type Markov process is found explicitly and, consequently, the distributions of the age of the batch in service, the total workload in the system, waiting times, and sojourn times of different batches and different types of customers are obtained. The paper gives the matrix representations of the PH-distributions of waiting times and sojourn times. Some results are obtained for the distributions of queue lengths at departure epochs and at an arbitrary time. These results can be used to analyze not only the queue length, but also the composition of the queue. Computational methods are developed for calculating steady state distributions related to the queue lengths, sojourn times, and waiting times.展开更多
A closed form of an analytical expression of concentration in the single-enzyme, single-substrate system for the full range of enzyme activities has been derived. The time dependent analytical solution for substrate, ...A closed form of an analytical expression of concentration in the single-enzyme, single-substrate system for the full range of enzyme activities has been derived. The time dependent analytical solution for substrate, enzyme-substrate complex and product concentrations are presented by solving system of non-linear differential equation. We employ He’s Homotopy perturbation method to solve the coupled non-linear differential equations containing a non-linear term related to basic enzymatic reaction. The time dependent simple analytical expressions for substrate, enzyme-substrate and free enzyme concentrations have been derived in terms of dimensionless reaction diffusion parameters ε, λ1, λ2 and λ3 using perturbation method. The numerical solution of the problem is also reported using SCILAB software program. The analytical results are compared with our numerical results. An excellent agreement with simulation data is noted. The obtained results are valid for the whole solution domain.展开更多
The conventional pseudo-acoustic wave equations(PWEs) in vertical transversely isotropic(VTI)media may generate SV-wave artifacts and propagation instabilities when anisotropy parameters cannot satisfy the pseudo-...The conventional pseudo-acoustic wave equations(PWEs) in vertical transversely isotropic(VTI)media may generate SV-wave artifacts and propagation instabilities when anisotropy parameters cannot satisfy the pseudo-acoustic assumption. One solution to these issues is to use pure acoustic anisotropic wave equations, which can produce stable and pure P-wave responses without any SVwave pollutions. The commonly used pure acoustic wave equations(PAWEs) in VTI media are mainly derived from the decoupled P-SV dispersion relation based on first-order Taylor-series expansion(TE), thus they will suffer from accuracy loss in strongly anisotropic media. In this paper, we adopt arbitrary-order TE to expand the square root term in Alkhalifah's accurate acoustic VTI dispersion relation and solve the corresponding PAWE using the normalized pseudoanalytical method(NPAM) based on optimized pseudodifferential operator. Our analysis of phase velocity errors indicates that the accuracy of our new expression is perfectly acceptable for majority anisotropy parameters. The effectiveness of our proposed scheme also can be demonstrated by several numerical examples and reverse-time migration(RTM) result.展开更多
基金Funded by the Fundamental Research Funds for the Central Universities of China(No.26816WTD23)the National United Engineering Laboratory of Integrated and Intelligent Transportation of Southwest Jiaotong University,P.R.China(No.2682017ZT11)
文摘Based on the factors impact strength model(FISM), we studied on calculation formulas of influence strength and key elements of FISM, and analyzed the turnover time of railway freight transportation of China. The results show that wagon transfer time is the most critical factor among the three subjective factors of wagons turnover time. The FISM based analysis of wagon transfer time show that the wagon turnover time is significantly correlated with transit time with resorting. Among the seven factors of detention time of transit time with resorting, the time of waiting to departing, converging, and waiting to break-up are key factors, while the time of make-up, break-up, arrival and departure are general factors. We carried out one empirical research based on the data of Baoji East Railway Station in 2015. The results of empirical research and FISM are consistent completely.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874121 and 60677029)
文摘This paper obtains a generalized tunneling time of one-dimensional potentials via time reversal invariance. It also proposes a simple explanation for the Hartman effect using the useful concept of the scattered subwaves.
基金supported by the National Natural Science Foundation of China(Grant No.11347171)the Natural Science Foundation of Hebei Province of China(Grant No.A2012108003)the Key Project of Educational Commission of Hebei Province of China(Grant No.ZD2014052)
文摘Using an algebraic approach, it is possible to obtain the temporal evolution wave function for a Gaussian wavepacket obeying the quadratic time-dependent Hamiltonian(QTDH). However, in general, most of the practical cases are not exactly solvable, for we need general solutions of the Riccatti equations which are not generally known. We therefore bypass directly solving for the temporal evolution wave function, and study its inverse problem. We start with a particular evolution of the wave-packet, and get the required Hamiltonian by using the inverse method. The inverse approach opens up a new way to find new exact solutions to the QTDH. Some typical examples are studied in detail. For a specific timedependent periodic harmonic oscillator, the Berry phase is obtained exactly.
文摘In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wave number domain and with a 2.5D approach.Three-dimensional numerical models formulated in the time/space domain are less frequently used,mainly due to their high computational cost.Notwithstanding,these models present very attractive characteristics,such as the possibility of considering nonlinear behaviors or the modelling of excess pore pressure and non-homogeneous and non-periodic geometries in the longitudinal direction of the track.In this study,two 3D numerical approaches formulated in the time/space domain are compared and experimentally validated.The first one consists of a finite element approach and the second one of a finite difference approach.The experimental validation in an actual case situated in Carregado(Portugal)shows an acceptable fitting between the numerical results and the actual measurements for both models.However,there are some differences among them.This study therefore includes some recommendations for their use in practical soil dynamics and geotechnical engineering.
基金Supported by the National Natural Science Foundation of China
文摘With tremendous advances in modem techniques, Einstein's general rela- tivity has become an inevitable part of deep space missions. We investigate the rela- tivistic algorithm for time transfer between the proper time - of the onboard clock and the Geocentric Coordinate Time, which extends some previous works by including the effects of propagation of electromagnetic signals. In order to evaluate the implicit algebraic equations and integrals in the model, we take an analytic approach to work out their approximate values. This analytic model might be used in an onboard com- puter because of its limited capability to perform calculations. Taking an orbiter like Yinghuo-1 as an example, we find that the contributions of the Sun, the ground station and the spacecraft dominate the outcomes of the relativistic corrections to the model.
基金Project supported by Science Foundation of Nantong University (Grant Nos. 03080122 and 09ZY001)
文摘In this paper, the analytical transfer matrix method (ATMM) is applied to study the properties of quantum reflection in three systems: a sech2 barrier, a ramp potential and an inverse harmonic oscillator. Our results agree with those obtained by Landau and Lifshitz [Landau L D and Lifshitz E M 1977 Quantum Mechanics (Non-relativistic Theory) (New York: Pergamon)], which proves that ATMM is a simple and effective method for quantum reflection.
文摘This paper studies a continuous time queueing system with multiple types of customers and a first-come-first-served service discipline. Customers arrive according to a semi-Markov arrival process and the service times of individual types of customers have PH-distributios. A GI/M/1 type Markov process for a generalized age process of batches of customers is constructed. The stationary distribution of the GI/M/1 type Markov process is found explicitly and, consequently, the distributions of the age of the batch in service, the total workload in the system, waiting times, and sojourn times of different batches and different types of customers are obtained. The paper gives the matrix representations of the PH-distributions of waiting times and sojourn times. Some results are obtained for the distributions of queue lengths at departure epochs and at an arbitrary time. These results can be used to analyze not only the queue length, but also the composition of the queue. Computational methods are developed for calculating steady state distributions related to the queue lengths, sojourn times, and waiting times.
文摘A closed form of an analytical expression of concentration in the single-enzyme, single-substrate system for the full range of enzyme activities has been derived. The time dependent analytical solution for substrate, enzyme-substrate complex and product concentrations are presented by solving system of non-linear differential equation. We employ He’s Homotopy perturbation method to solve the coupled non-linear differential equations containing a non-linear term related to basic enzymatic reaction. The time dependent simple analytical expressions for substrate, enzyme-substrate and free enzyme concentrations have been derived in terms of dimensionless reaction diffusion parameters ε, λ1, λ2 and λ3 using perturbation method. The numerical solution of the problem is also reported using SCILAB software program. The analytical results are compared with our numerical results. An excellent agreement with simulation data is noted. The obtained results are valid for the whole solution domain.
基金supported by the National Natural Science Foundation of China (NSFC) under contract granted No. 41474110Research Foundation of China University of Petroleum-Beijing at Karamay under contract number RCYJ2018A-01-001
文摘The conventional pseudo-acoustic wave equations(PWEs) in vertical transversely isotropic(VTI)media may generate SV-wave artifacts and propagation instabilities when anisotropy parameters cannot satisfy the pseudo-acoustic assumption. One solution to these issues is to use pure acoustic anisotropic wave equations, which can produce stable and pure P-wave responses without any SVwave pollutions. The commonly used pure acoustic wave equations(PAWEs) in VTI media are mainly derived from the decoupled P-SV dispersion relation based on first-order Taylor-series expansion(TE), thus they will suffer from accuracy loss in strongly anisotropic media. In this paper, we adopt arbitrary-order TE to expand the square root term in Alkhalifah's accurate acoustic VTI dispersion relation and solve the corresponding PAWE using the normalized pseudoanalytical method(NPAM) based on optimized pseudodifferential operator. Our analysis of phase velocity errors indicates that the accuracy of our new expression is perfectly acceptable for majority anisotropy parameters. The effectiveness of our proposed scheme also can be demonstrated by several numerical examples and reverse-time migration(RTM) result.