The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming...The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming at the problem of degradation of long-span continuous rigid frame bridges due to fatigue and environmental effects,this paper suggests a method to analyze the fatigue degradation mechanism of this type of bridge,which combines long-term in-site monitoring data collected by the health monitoring system(HMS)and fatigue theory.In the paper,the authors mainly carry out the research work in the following aspects:First of all,a long-span continuous rigid frame bridge installed with HMS is used as an example,and a large amount of health monitoring data have been acquired,which can provide efficient information for fatigue in terms of equivalent stress range and cumulative number of stress cycles;next,for calculating the cumulative fatigue damage of the bridge structure,fatigue stress spectrum got by rain flow counting method,S-N curves and damage criteria are used for fatigue damage analysis.Moreover,it was considered a linear accumulation damage through the Palmgren-Miner rule for the counting of stress cycles.The health monitoring data are adopted to obtain fatigue stress data and the rain flow counting method is used to count the amplitude varying fatigue stress.The proposed fatigue reliability approach in the paper can estimate the fatigue damage degree and its evolution law of bridge structures well,and also can help bridge engineers do the assessment of future service duration.展开更多
As the outfield load spectrum is so complicated that it cannot be used directly for test study in laboratory.This paper presents a method to determine load spectrum for high and low cycle combined fatigue of turbine m...As the outfield load spectrum is so complicated that it cannot be used directly for test study in laboratory.This paper presents a method to determine load spectrum for high and low cycle combined fatigue of turbine mortise at elevated temperature through experimental and numerical method.First of all,the low cycle load spectrum with duration time is determined through cumulative damage rule.The rain flow counting method is applied to obtain main cycles and sub cycles,and then the stress cycle is converted into pulsation cycle(stress ratio=0)based on the S-N curve and the Goodman curve;Secondly,three groups of different amplitudes tests are established to determine the high cycle amplitude.Finally,another three groups of the high-low combined cycle fatigue(HLCCF)tests for turbine mortise of a certain type engine are carried out.The results show that the macro and micro failure modes are identical with outfield's,which verifies the accuracy of the conversion method.展开更多
文摘The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming at the problem of degradation of long-span continuous rigid frame bridges due to fatigue and environmental effects,this paper suggests a method to analyze the fatigue degradation mechanism of this type of bridge,which combines long-term in-site monitoring data collected by the health monitoring system(HMS)and fatigue theory.In the paper,the authors mainly carry out the research work in the following aspects:First of all,a long-span continuous rigid frame bridge installed with HMS is used as an example,and a large amount of health monitoring data have been acquired,which can provide efficient information for fatigue in terms of equivalent stress range and cumulative number of stress cycles;next,for calculating the cumulative fatigue damage of the bridge structure,fatigue stress spectrum got by rain flow counting method,S-N curves and damage criteria are used for fatigue damage analysis.Moreover,it was considered a linear accumulation damage through the Palmgren-Miner rule for the counting of stress cycles.The health monitoring data are adopted to obtain fatigue stress data and the rain flow counting method is used to count the amplitude varying fatigue stress.The proposed fatigue reliability approach in the paper can estimate the fatigue damage degree and its evolution law of bridge structures well,and also can help bridge engineers do the assessment of future service duration.
基金This work is supported by National Natural Science Foundation of China(51305012)Doctoral Fund of Ministry of Education of China(20111102120011)National Natural Science Foundation of China(51375031).The writers are grateful。
文摘As the outfield load spectrum is so complicated that it cannot be used directly for test study in laboratory.This paper presents a method to determine load spectrum for high and low cycle combined fatigue of turbine mortise at elevated temperature through experimental and numerical method.First of all,the low cycle load spectrum with duration time is determined through cumulative damage rule.The rain flow counting method is applied to obtain main cycles and sub cycles,and then the stress cycle is converted into pulsation cycle(stress ratio=0)based on the S-N curve and the Goodman curve;Secondly,three groups of different amplitudes tests are established to determine the high cycle amplitude.Finally,another three groups of the high-low combined cycle fatigue(HLCCF)tests for turbine mortise of a certain type engine are carried out.The results show that the macro and micro failure modes are identical with outfield's,which verifies the accuracy of the conversion method.