期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Evaluation of WRF-based Convection-Permitting Multi-Physics Ensemble Forecasts over China for an Extreme Rainfall Event on 21 July 2012 in Beijing 被引量:13
1
作者 Kefeng ZHU Ming XUE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第11期1240-1258,共19页
On 21 July 2012,an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm,occurred in Beijing,China. Most operational models failed to predict such an extreme amount. In this study,a co... On 21 July 2012,an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm,occurred in Beijing,China. Most operational models failed to predict such an extreme amount. In this study,a convective-permitting ensemble forecast system(CEFS),at 4-km grid spacing,covering the entire mainland of China,is applied to this extreme rainfall case. CEFS consists of 22 members and uses multiple physics parameterizations. For the event,the predicted maximum is 415 mm d^-1 in the probability-matched ensemble mean. The predicted high-probability heavy rain region is located in southwest Beijing,as was observed. Ensemble-based verification scores are then investigated. For a small verification domain covering Beijing and its surrounding areas,the precipitation rank histogram of CEFS is much flatter than that of a reference global ensemble. CEFS has a lower(higher) Brier score and a higher resolution than the global ensemble for precipitation,indicating more reliable probabilistic forecasting by CEFS. Additionally,forecasts of different ensemble members are compared and discussed. Most of the extreme rainfall comes from convection in the warm sector east of an approaching cold front. A few members of CEFS successfully reproduce such precipitation,and orographic lift of highly moist low-level flows with a significantly southeasterly component is suggested to have played important roles in producing the initial convection. Comparisons between good and bad forecast members indicate a strong sensitivity of the extreme rainfall to the mesoscale environmental conditions,and,to less of an extent,the model physics. 展开更多
关键词 extreme rainfall ensemble forecast Ensemble convective mesoscale convection mainland verification
下载PDF
Rainfall forecast errors in different landfall stages of Super Typhoon Lekima (2019) 被引量:2
2
作者 Bin HE Zifeng YU +2 位作者 Yan TAN Yan SHEN Yingjun CHEN 《Frontiers of Earth Science》 SCIE CSCD 2022年第1期34-51,共18页
The rainfall forecast performance of the Tropical Cyclone(TC)version Model of Global and Regional Assimilation PrEdiction System(GRAPESTCM)of the China Meteorological Administration for landfalling Super Typhoon Lekim... The rainfall forecast performance of the Tropical Cyclone(TC)version Model of Global and Regional Assimilation PrEdiction System(GRAPESTCM)of the China Meteorological Administration for landfalling Super Typhoon Lekima(2019)is studied by using the object-oriented verification method of contiguous rain area(CRA).The major error sources and possible reasons for the rainfall forecast uncertainties in different landfall stages(including near landfall and moving further inland)are compared.Results show that different performance and errors of rainfall forecast exist in the different TC stages.In the near landfall stage the asymmetric rainfall distribution is hard to be simulated,which might be related to the too strong forecasted TC intensity and too weak vertical wind shear accompanied.As Lekima moves further inland,the rain pattern and volume errors gradually increase.The Equitable Threat Score of the 24 h forecasted rainfall over 100 mm declines quickly with the time-length over land.The diagnostic analysis shows that there exists an interaction between the TC and the mid-latitude westerlies,but too weak frontogenesis is simulated.The results of this research indicate that for the current numerical model,the forecast ability of persistent heavy rainfall is very limited,especially when the weakened landing TC moves further inland. 展开更多
关键词 landing tropical cyclone rainfall forecast verification contiguous rain area Lekima
原文传递
Analysis of a Heavy Rainfall Event over Beijing During 21-22 July2012 Based on High Resolution Model Analyses and Forecasts 被引量:8
3
作者 姜晓曼 袁慧玲 +2 位作者 薛明 陈曦 谭晓光 《Journal of Meteorological Research》 SCIE 2014年第2期199-212,共14页
The heaviest rainfall over 61 yr hit Beijing during 21-22 July 2012.Characterized by great rainfall amount and intensity,wide range,and high impact,this record-breaking heavy rainfall caused dozens of deaths and exten... The heaviest rainfall over 61 yr hit Beijing during 21-22 July 2012.Characterized by great rainfall amount and intensity,wide range,and high impact,this record-breaking heavy rainfall caused dozens of deaths and extensive damage.Despite favorable synoptic conditions,operational forecasts underestimated the precipitation amount and were late at predicting the rainfall start time.To gain a better understanding of the performance of mesoscale models,verification of high-resolution forecasts and analyses from the WRFbased BJ-RUCv2.0 model with a horizontal grid spacing of 3 km is carried out.The results show that water vapor is very rich and a quasi-linear precipitation system produces a rather concentrated rain area.Moreover,model forecasts are first verified statistically using equitable threat score and BIAS score.The BJ-RUCv2.0forecasts under-predict the rainfall with southwestward displacement error and time delay of the extreme precipitation.Further quantitative analysis based on the contiguous rain area method indicates that major errors for total precipitation(〉 5 mm h^(-1)) are due to inaccurate precipitation location and pattern,while forecast errors for heavy rainfall(〉 20 mm h^(-1)) mainly come from precipitation intensity.Finally,the possible causes for the poor model performance are discussed through diagnosing large-scale circulation and physical parameters(water vapor flux and instability conditions) of the BJ-RUCv2.0 model output. 展开更多
关键词 heavy rainfall precipitation verification mesoscale model torrential rain forecast
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部