期刊文献+
共找到350篇文章
< 1 2 18 >
每页显示 20 50 100
Rainwater harvesting systems: An urban flood risk mitigation measure in arid areas 被引量:1
1
作者 Rouya Hdeib Marwan Aouad 《Water Science and Engineering》 EI CAS CSCD 2023年第3期219-225,共7页
Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of ... Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of rainfall and their reduced efficiency in covering water demand and reducing water consumption rates. In spite of this, RWH systems have the potential to reduce urban flood risks, particularly in densely populated areas. This study aimed to assess the potential use of RWH systems as urban flood mitigation measures in arid areas. Their utility in the retention of stormwater runoff and the reduction of water depth and extent were evaluated. The study was conducted in a residential area in Bahrain that experienced waterlogging after heavy rainfall events. The water demand patterns of housing units were analyzed, and the daily water balance for RWH tanks was evaluated. The effect of the implementation of RWH systems on the flood volume was evaluated with a two-dimensional hydrodynamic model. Flood simulations were conducted in several rainfall scenarios with different probabilities of occurrence. The results showed significant reductions in the flood depth and flood extent, but these effects were highly dependent on the rainfall intensity of the event. RWH systems are effective flood mitigation measures, particularly in urban arid regions short of proper stormwater control infrastructure, and they enhance the resilience of the built environment to urban floods. 展开更多
关键词 rainwater harvesting Urban floods Flood map Hydrodynamic model Built environment Arid areas
下载PDF
Water and Energy Conservation of Rainwater Harvesting System in the Loess Plateau of China 被引量:3
2
作者 JIANG Zhi-yun LI Xiao-yan MAYu-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第8期1389-1395,共7页
Water is the source of all the creatures on the earth and energy is the main factor driving the world. With the increasing population and global change, water and energy conservation have become worldwide focal issues... Water is the source of all the creatures on the earth and energy is the main factor driving the world. With the increasing population and global change, water and energy conservation have become worldwide focal issues, particularly in the water-stressed and energy-limited regions. Rainwater harvesting, based on the collection and storage of rainfall runoff, has been widely used for domestic use and agricultural production in arid and semiarid regions. It has advantages of simple operation, high adaption, low cost and less energy consumption. This study reviewed rainwater harvesting systems adopted in the Loess Plateau of China and analyzed water use efficiency (WUE) for various rainwater harvesting techniques. Supplemental irrigation using harvested rainwater could increase crop yield by more than 30%, and WUE ranged from 0.7 to 5.7 kg m4 for spring wheat, corn and flax, and 30-40 kg m-3 for vegetables. Moreover, energy consumption for rainwater harvesting based on single family was compared with traditional water supply in the city of the Loess Plateau using the life cycle assessment (LCA) method. Results showed that energy consumption yielded per unit harvested rainwater was 25.96 MJ m-3 yr which was much less than 62.25 MJ m3 yr^-1 for main water supply in Baoji City, Shanxi Province, meaning that rainwater harvesting saved energy by 139.8% as compared to the main water supply system. This study highlights the importance and potential of rainwater harvesting for water and energy conservation in the near future. 展开更多
关键词 rainwater harvesting water saving energy conservation life cycle assessment (LCA)
下载PDF
Rainwater harvesting to alleviate water scarcity in dry conditions:A case study in Faria Catchment,Palestine 被引量:2
3
作者 Sameer SHADEED Jens LANGE 《Water Science and Engineering》 EI CAS 2010年第2期132-143,共12页
In arid and semi-arid regions, the availability of adequate water of appropriate quality has become a limiting factor for development. This paper aims to evaluate the potential for rainwater harvesting in the arid to ... In arid and semi-arid regions, the availability of adequate water of appropriate quality has become a limiting factor for development. This paper aims to evaluate the potential for rainwater harvesting in the arid to semi-arid Faria Catchment, in the West Bank, Palestine. Under current conditions, the supply-demand gap is increasing due to the increasing water demands of a growing population with hydrologically limited and uncertain supplies. By 2015, the gap is estimated to reach 4.5 x 106 m3. This study used the process-oriented and physically-based TRAIN-ZIN model to evaluate two different rainwater harvesting techniques during two rainfall events. The analysis shows that there is a theoretical potential for harvesting an additional 4 x 106 m3 of surface water over the entire catchment. Thus, it is essential to manage the potential available surface water supplies in the catchment to save water for dry periods when the supply-demand gap is comparatively high. Then a valuable contribution to bridging the supply-demand gap can be made. 展开更多
关键词 rainwater harvesting surface water management options water resources Faria Catchment arid and semi-arid catchments TRAIN-ZIN model
下载PDF
Future Prospects for Macro Rainwater Harvesting (RWH) Technique in North East Iraq 被引量:2
4
作者 Nadhir Al-Ansari Mawada Abdellatif +2 位作者 Saleh Zakaria Yaseen T. Mustafa Sven Knutsson 《Journal of Water Resource and Protection》 2014年第5期403-420,共18页
Countries in Middle East and North Africa (MENA region) are considered as arid and semi-arid areas that are suffering from water scarcity. They are expected to have more water shortages problem due to climatic change.... Countries in Middle East and North Africa (MENA region) are considered as arid and semi-arid areas that are suffering from water scarcity. They are expected to have more water shortages problem due to climatic change. Iraq is located in the Middle East covering an area of 433,970 square kilometers populated by 31 million inhabitants. One of the solutions suggested to overcome water scarcity is Rainwater Harvesting (RWH). In this study Macro rainwater harvesting technique had been tested for future rainfall data that were predicted by two emission scenarios of climatic change (A2 and B2) for the period 2020-2099 at Sulaimaniyah Governorate north east of Iraq. Future volumes of total runoff that might be harvested for different conditions of maximum, average, and minimum future rainfall seasons under both scenarios (A2 and B2) were calculated. The results indicate that the volumes of average harvested runoff will be reduced when average rainfall seasons are considered due to the effect of climatic change on future rainfall. The reduction reached 10.82 % and 43.0% when scenarios A2 and B2 are considered respectively. 展开更多
关键词 rainwater harvesting Sulaimaniyah Iraq
下载PDF
Ridge-furrow rainwater harvesting with supplemental irrigation to improve seed yield and water use efficiency of winter oilseed rape(Brassica napus L.) 被引量:2
5
作者 GU Xiao-bo LI Yuan-nong +1 位作者 DU Ya-dan YIN Min-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1162-1172,共11页
Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in a... Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in arid and semiarid areas. Supplemental irrigation would still be needed to achieve a higher production. Field experiments were conducted for two growing seasons (2012-2013 and 2013-2014)to determine an appropriate amount of supplemental irrigation to be applied to winter oilseed rape at the stem-elongation stage with RFRH planting pattern. Four treatments, including supplemental irrigation amount of 0 (I1), 60 mm (I2) and 120 mm (I3) with RFRH planting pattern and a control (CK) irrigated with 120 mm with flat planting pattern, were set up to evaluate the effects of supplemental irrigation on aboveground dry matter (ADM), nitrogen nutrition index (NNI), radiation use efficiency (RUE), water use efficiency (WUE), and seed yield and oil content of the oilseed rape. Results showed that supplemental irrigation improved NNI, RUE, seed yield and oil content, and WUE. However, the NNI, RUE, seed yield and oil content, and WUE did not increase significantly or even showed a downward trend with excessive irrigation. Seed yield was the highest in 13 for both growing seasons. Seed yield and WUE in 13 averaged 3235 kg ha^-1 and 8.85 kg ha^-1 mm-1, respectively. The highest WUE was occurred in 12 for both growing seasons. Seed yield and WUE in 12 averaged 3089 kg ha^-1 and 9.63 kg ha^-1 mm^-1, respectively. Compared to 13, 12 used 60 mm less irrigation amount, had an 8.9% higher WUE, but only 4.5 and 0.4% lower seed yield and oil content, respectively. 12 saved water without substantially sacrificing yield or oil content, so it is recommended as an appropriate cultivation and irrigation schedule for winter oilseed rape at the stem-elongation stage. 展开更多
关键词 ridge-furrow rainwater harvesting (RFRH) supplemental irrigation winter oilseed rape seed yield oil content water use efficience (WUE)
下载PDF
Wheat yield scenarios for rainwater harvesting at Northern Sinjar Mountain, Iraq 被引量:2
6
作者 Saleh Zakaria Nadhir Al-Ansari Sven Knutsson 《Natural Science》 2013年第10期1057-1068,共12页
Iraq is part of West Asia and North Africa (WANA) region. The area is known as dry land, famous with gap of crop yield as a result of the water shortage problem. Six basins with total catchment area of 614.19 km2 at r... Iraq is part of West Asia and North Africa (WANA) region. The area is known as dry land, famous with gap of crop yield as a result of the water shortage problem. Six basins with total catchment area of 614.19 km2 at rain-fed of Northern Sinjar District (Iraq) had been chosen to investigate both of the potential of rainwater harvesting (RWH) and three supplemental irrigation (SI) scenarios S1, S2, and S3 (100%, 75%, and 50% of full irrigation requirement) to support the wheat yield (bread and durum) under various rainfall conditions for the study period 1990-2009. The results indicated that, the total volume of harvested runoff can be considered for irrigation practices, that reached up to 42.4, 25.1, 0.6, 10.9 (× 106 m3) during 1995-1996, 1996-1997, 1998-1999, and 2001-2002, respectively. The total irrigated area ranged between 10.9 - 5163.7 and 8.8 - 3595.7 (ha) for bread and durum wheat crop for the four selected seasons respectively. The yield scenarios for supplemental irrigation condition Y1, Y2, and Y3 give 68 - 9712, 94 - 12,999, and 105 - 22,806 Ton for bread wheat, and for durum wheat give 56 - 8035, 87 - 10,906, and 103 - 17,396 Ton. 展开更多
关键词 rainwater harvesting Supplemental IRRIGATION WHEAT Yield Sinjar Iraq.
下载PDF
Impact Assessment of Hillside Rainwater Harvesting Ponds on Agriculture Income: Case Study of Ntarama Sector in Rwanda 被引量:1
7
作者 Omar Munyaneza Félicien Majoro +1 位作者 Emmanuel Hagenimana Wilbert Usabyisa 《Journal of Water Resource and Protection》 2016年第9期844-854,共12页
Nowadays, rainwater harvesting (RWH) technology is increasingly adopted as a strategic pathway for reducing poverty in rural drought prone areas for enhancing agricultural productivity and boosting farm income. The ai... Nowadays, rainwater harvesting (RWH) technology is increasingly adopted as a strategic pathway for reducing poverty in rural drought prone areas for enhancing agricultural productivity and boosting farm income. The aim of this study is to assess the level of adoption and the impacts of RWH ponds on farm income in Ntarama sector of Bugesera District in Eastern Province of Rwanda. Fifteen farm ponds were visited and the level at which households adopted RWH ponds, their impact on farm income and performance in storing water were assessed. Interviews and questionnaires methods were used to farm ponds beneficiaries and the storage capacity of farm ponds was calculated to ensure that they meet irrigation water demand. Then, Microsoft excel was used as a data analysis tool. The results show that 42.5% of households have adopted RWH ponds and the adoption level of RWH ponds fails due to the lack of training about the role and use of RWH ponds before their implementation. Beside this the low level of public involvement during the site selection for ponds associated with social conflicts among water users was observed. However, it is further revealed that the use of RWH ponds positively impacts on agricultural income on 1/4 hectare per year by about 2,325,000 RWF (3100USD). The studied portion of area can bear 222 ponds of 120 m<sup>3</sup> each if all the rain is harvested throughout the year instead of being three ponds. Furthermore, we found that the quantity of rainwater harvested of 328.5 m<sup>3</sup> as a total of the 3 ponds was still too less to meet irrigation water demand. As negative impacts, the RWH technology can cause dangerous effects such as social conflicts, breeding site for mosquitoes, water related diseases, accidents and others with a level of severity of 32%, 24%, 20%, 16% and 8%, respectively. This happens when the RWH ponds are not properly managed. 展开更多
关键词 Farm Income Impact Assessment rainwater harvesting Ponds and Technology Rwanda
下载PDF
Application of GIS for Mapping Rainwater-Harvesting Potential: Case Study Wollert, Victoria 被引量:1
8
作者 Sultana Nasrin Baby Colin Arrowsmith Nadhir Al-Ansari 《Engineering(科研)》 2019年第1期14-21,共8页
Water is a basic normal asset for supporting the condition of life. Accessible water assets are feeling the squeeze because of expanding demand. Soon water, which we have depended upon to be accessible and an uncondit... Water is a basic normal asset for supporting the condition of life. Accessible water assets are feeling the squeeze because of expanding demand. Soon water, which we have depended upon to be accessible and an unconditional present of nature will turn into a rare product. Protection and conservation of water assets are desperately required. In many parts of Victoria, water supply to communities is limited. Rainwater harvesting systems can provide water at or near the point of demand. The systems can be owner and utility operated and managed. Rainwater collected using existing structures, i.e. rooftops, parking lots, playgrounds, parks, ponds, floodplains etc., has few negative environmental impacts compared to other technologies for water resources development. Rainwater is relatively clean and the quality is usually acceptable for many purposes with little or even no treatment. The physical and chemical properties of rainwater are usually superior to sources of groundwater that may have been subjected to contamination. The present study was intended to measure the rooftop rainwater harvesting potential using GIS techniques. The GIS examination utilized in this investigation was basically an efficient assessment of rooftop water collecting in the chose Wollert which is a suburb in Melbourne, Victoria. With the use of GIS it was conceivable to appraise the aggregate sum of water harvestable at the household level. It is very tedious work to assess the catchments available for rooftop rainwater harvesting. Here the roof surfaces are the catchments and GIS is employed to calculate the area of various types of roofs and their potential for planning for the area under study. As a result Eucalypt Estate Wollert has huge potential and can make above 179.11 litres water available per person per day throughout the year. 展开更多
关键词 rainwater harvesting POTENTIAL Measurement Rooftop GIS
下载PDF
Rooftop Rainwater Harvesting as an Alternative Domestic Water Resource in Zambia 被引量:1
9
作者 Tseko Malambo Qinghui Huang 《Journal of Geoscience and Environment Protection》 2016年第13期41-57,共17页
Within the last decade, substantial progress has been achieved in the management of centralized water reticulation in Zambia. Characterized by diversified fiscal resourcing, concurrent institutional restructuring and ... Within the last decade, substantial progress has been achieved in the management of centralized water reticulation in Zambia. Characterized by diversified fiscal resourcing, concurrent institutional restructuring and introduction of new players in water governance, the water sector is set to achieve improved reliability on sustainable grounds. However, the threat of underground water pollution resulting from increased urbanization besides the unreliable energy sector presents new challenges for the current urban water. In effect, urban areas are affected by chronic water rationing creating public stress and insecurity which impacts domestic development. While the course of development has meant investment in the extension and expansion of water infrastructure in Zambia, alternative urban water resources are being sought to address challenges of traditional water systems globally. This paper therefore attempts to make a case for the modernization of Rooftop Rainwater Harvesting (RRWH) as an augmenting water resource in the Zambian urban housing sector. Here—in, it is identified as a Low Impact Development technology within the Integrated Urban Water Management framework currently being forged by local water. Based on a desktop literature survey and online questionnaire survey, an argument to support the development of RRWH in Zambia was developed. While literature survey results revealed evidence of economic loss and a growing compromise to public health resulting from inconsistent water supply in the study area of Lusaka city, the online questionnaire survey depicted significant domestic stress due to erratic water supply. Results confirmed that at one time residents observed an average of eight hours of power blackouts which effectively induced water disruption forcing homeowners to engage in various water storage methods which in turn are costly on domestic time, health and finances. A retrospective discussion based on both survey results attempts to present benefits and opportunities of urban RRWH to water sector stakeholders providing recommendations towards the mainstreaming of the practice in Zambia. 展开更多
关键词 Low Impact Development Integrated Urban Water Management Rooftop rainwater harvesting Urban rainwater harvesting
下载PDF
A New Rainwater Harvesting and Recycling System for Transforming Sloping Land into Terraced Farmland
10
作者 SHI Yuan-zhi WANG Yue-hong +2 位作者 CUI Yuan-lai WANG Shi-wu ZHANG Yu-shuai 《Journal of Mountain Science》 SCIE CSCD 2014年第1期205-214,共10页
Transforming sloping land into terraced land is an effective approach to cope with the problems including farmland shortage and severe soil erosion.This paper introduces a new system based on rainwater harvesting and ... Transforming sloping land into terraced land is an effective approach to cope with the problems including farmland shortage and severe soil erosion.This paper introduces a new system based on rainwater harvesting and recycling technology,which may effectively improve farmland productivity rainwater use efficiency and reduce water and fertilizer inputs.The new system consists of three subsystems:1) A plough layer with the dual function of crop cultivation and rainwater harvesting; 2) A tank below the plough layer for storing water; 3) An irrigation-drainage subsystem.The plough layer and the storage tank,both treated for reducing seepage,are connected through the irrigation and drainage system.Results showed that,compared with the traditional paddy fields,rice evapotranspiration( and crop coefficient) in the test field remained at a similar level,while the irrigation amount was reduced by 44.3% under the condition of basin irrigation,and the drainage amount decreased by 86.6%,and the non-point source pollution was reduced to 67.7%~87.9%,and the rainwater utilization efficiency increased by 30% and reached 95.4%,and crop yield of middle-season rice reached 9,975 kg/hm2,which was only 0.4% lower than that in the traditional paddy field in the terms of dry matter.The new technology sheds light on new possibilities for transformation of hilly sloping land. 展开更多
关键词 Hills Sloping LAND Terraced FARMLAND rainwater harvesting RECYCLING
下载PDF
Efficiency and Economy of a New Agricultural Rainwater Harvesting System
11
作者 Ji Wenhua Cai Jianming Marinus van Veenhuizen 《Chinese Journal of Population,Resources and Environment》 2010年第4期41-48,共8页
Shortage of water is the key limiting factor for agricultural development of Beijing.Rainwater harvesting(RWH) could provide an alternative water source for greenhouse agriculture,but local natural and socioeconomic c... Shortage of water is the key limiting factor for agricultural development of Beijing.Rainwater harvesting(RWH) could provide an alternative water source for greenhouse agriculture,but local natural and socioeconomic conditions challenge the application of the technology.This article analyses the advantages and disadvantages of different types of greenhouse RWH in Beijing,and describes a new greenhouse RWH system demonstrated in 2008 in Huairou,a suburb district of Beijing.It analyses the efficiency,cost-benefit ratios and limiting factors of the new system.The results show that with the new system,RWH efficiency can be as high as 66%(of total rainfall) and the rainwater usage rate can reach 69% of total water usage.The ratio of benefit to cost of government investment can be 1.84,and the ratio of benefit to cost of a farmer's investment could be 1.68 provided the project is designed to save water and also increase income.However,the price of groundwater for agriculture directly influences the potential for applying and scaling up the project.If the RWH system does not increase the farmers' incomes at the current water price,they will not use it until the water price rises to a critical point,which is determined by external factors.This article also suggests a number of measures to increase the efficiency of the system in order to apply it on a large scale. 展开更多
关键词 BEIJING greenhouse agriculture rainwater harvesting COST-BENEFIT
下载PDF
Complementing Water Supply through Rainwater Harvesting in Some Selected Villages of Sahel Savannah Ecological Zone in Borno State Northeastern Nigeria
12
作者 H. T. Ishaku A. P. Abayomi +1 位作者 A. A. Sahabo F. M. Dama 《Journal of Water Resource and Protection》 2013年第2期200-207,共8页
One of the greatest environmental challenges that confront rural communities in Nigeria especially in Borno state is scarcity of water supply. Rainwater harvesting can reduce over dependence on centralized piped water... One of the greatest environmental challenges that confront rural communities in Nigeria especially in Borno state is scarcity of water supply. Rainwater harvesting can reduce over dependence on centralized piped water supply and checkmate climate change. This study in two rural communities determined the water per capita use, examined water sources and then estimated the amount of rainwater that can be harvested by households in these villages. The villages are Kukurpu and Yelwa Bam in Hawul local government area of Borno state Nigeria. The choice of the villages is justified on the basis of their location in the semi-arid region of the Sahel ecological zone with lesser rainfall compared to other parts in the region. Lack of adequate access to water supply is precursor to water related diseases and challenge to sustainable development. This study used scheduled interview with households and 100 household were surveyed using simple random sampling. In each of the village, 50 observations were made Results revealed that 87% of the households rely water from hand dug wells, ephemeral streams and boreholes equipped with manual hand pumps that are susceptible to drought and frequent breakdown. Borno state where the villages are located had a mean annual rainfall of 860 mm from 1980 to 2009;however, the annual rainwater harvesting potential was put at 51.21 m3. Although over 80% are aware of rainwater harvesting practices only 2% of households harvest rainwater due to the seasonality of rain-fall coupled with inadequate water storage facilities. There is therefore the need to embark on massive rainwater harvesting with corresponding water reservoir as a way to reduce the effects of the five months dry spell experienced in the region. 展开更多
关键词 rainwater harvesting Water Supply SAHEL SAVANNAH Ecological Zone
下载PDF
Cost Comparison and Hydraulic Design of Four Types of Residential Rainwater Harvesting Systems for Small Rural Communities, Considering Natural or Anthropogenic Climate Change Factors
13
作者 Martín Mundo-Molina Eber Godinez +1 位作者 José Luis Pérez-Díaz Daniel Hernández 《Journal of Water Resource and Protection》 2018年第11期1115-1128,共14页
This document presents the technical description and cost comparison of four rainwater harvesting systems for homes, the method for its hydraulic design and an equation to estimate the minimum catchment area, with the... This document presents the technical description and cost comparison of four rainwater harvesting systems for homes, the method for its hydraulic design and an equation to estimate the minimum catchment area, with the goal to supply drinking water to segregated small communities in Mexico considering climate change effects, both natural and anthropogenic. The four Rainwater Harvesting Systems (RHS) introduced in this work are the following: two rigid, one system built with ferrocement and the other built with clay bricks, and two flexible: one is a commercial collector while the other is a system built with a 3/8-inch reinforcing bar mesh and covered with a linear low-density polyethylene geomembrane. The RHS consist in cylindrical containers built with diverse materials, and in the case of rigid RHSs, they can store up to 50,000 liters of water. Also, rigid RHSs have a longer useful life and are more resistant than flexible RHSs, but their cost is notably higher. Rigid RHSs compete in price with commercial rainwater harvesting system brands like Rotoplas, but commercial RHSs disadvantages are their lower durability, storage capacity, and resistance. On the other hand, flexible RHSs are less durable than rigid ones, although, in the case of the rainwater harvesting system made with a 3/8-inch reinforcing bar mesh, the system can be rebuilt and reused and the cost is much lower. The design of the collectors takes into consideration the climate variability of the study area, natural or anthropogenic. 展开更多
关键词 rainwater harvesting Systems RURAL COMMUNITIES HYDRAULIC Design
下载PDF
Potential of rooftop rainwater harvesting to meet outdoor water demand in arid regions
14
作者 Kazi TAMADDUN Ajay KALRA Sajjad AHMAD 《Journal of Arid Land》 SCIE CSCD 2018年第1期68-83,共16页
The feasibility of rooftop rainwater harvesting (RRWH) as an alternative source of water to meet the outdoor water demand in nine states of the U.S. was evaluated using a system dynamics model developed in Systems T... The feasibility of rooftop rainwater harvesting (RRWH) as an alternative source of water to meet the outdoor water demand in nine states of the U.S. was evaluated using a system dynamics model developed in Systems Thinking, Experimental Learning Laboratory with Animation. The state of Arizona was selected to evaluate the effects of the selected model parameters on the efficacy of RRWH since among the nine states the arid region of Arizona showed the least potential of meeting the outdoor water demand with rain harvested water. The analyses were conducted on a monthly basis across a 10-year projected period from 2015 to 2024. The results showed that RRWH as a potential source of water was highly sensitive to certain model parameters such as the outdoor water demand, the use of desert landscaping, and the percentage of existing houses with RRWH. A significant difference (as high as 37.5%) in rainwater potential was observed between the projected wet and dry climate conditions in Arizona. The analysis of the dynamics of the storage tanks suggested that a 1.0-2.0 m3 rainwater barrel, on an average, can store approximately 80% of the monthly rainwater generated from the rooftops in Arizona, even across the high seasonal variation. This interactive model can be used as a quick estimator of the amount of water that could be generated, stored, and utilized through RRWH systems in the U.S. under different climate conditions. The findings of such comprehensive analyses may help regional policymakers, especially in arid regions, to develop a sustainable water management infrastructure. 展开更多
关键词 rooftop rainwater harvesting rainwater storage tank dynamics sustainability of outdoor water usage sustainability of water in arid regions best management practices in arid regions variation of rainfall under variousclimate conditions
下载PDF
Strategy to Overcome Barriers of Rainwater Harvesting, Case Study Tanzania
15
作者 Tulinave Burton Mwamila Moo Young Han Zacharia Katambara 《Journal of Geoscience and Environment Protection》 2016年第9期13-23,共11页
There are socio-technological challenges towards extension of the application of rainwater harvesting (RWH) practices in developing countries. An attempt to address this was done using the Mnyundo Primary School, Tanz... There are socio-technological challenges towards extension of the application of rainwater harvesting (RWH) practices in developing countries. An attempt to address this was done using the Mnyundo Primary School, Tanzania, as a study area for evaluating the technical, economic, and social challenges of RWH practices. A storage water level monitoring gauge was used so as to simplify rainwater quantity control and utilization strategy. Basic quality control components such as first flush tank were incorporated so as to reduce the particle load flowing into the storage. Cost reduction strategies such as the one (1) company one (1) community campaign were applied to address the cost implication. To enhance ownership, participatory approach of the beneficiaries in all stages including planning, designing and implementation was adopted. In order to ensure project sustainability, training on how to operate and maintain were provided as well as a maintenance manual to impart a sense of ownership. For the challenges of imparting RWH practices in Tanzania, 19 solutions have been identified and they include provision of RWH manuals, guidelines and regulations, government incentives, and promotion of self-financing initiatives. For developing countries, the study proposes the following strategies: establishing relevant regulations and research centers, enhancing individual and community financial stability, conducting demonstration projects, and increased investment by government on promotion. 展开更多
关键词 Community Based rainwater harvesting rainwater harvesting Challenges rainwater harvesting Adoption rainwater harvesting Sustainability Tanzania
下载PDF
Assessment of Rainwater Harvesting Reticulation Systems to Reduce High Management Costs in Household Buildings
16
作者 James Shikuku Gerryshom Munala +4 位作者 Bernard Mugwima Teckla Muhoro Andrew Gremley Victor Nyakundi Muhammad Ali 《Natural Resources》 2020年第4期156-167,共12页
Rainwater harvesting?provides an important alternative source of water in household buildings which?increases water security in urban areas. However, high energy cost consumption by the rainwater harvesting systems re... Rainwater harvesting?provides an important alternative source of water in household buildings which?increases water security in urban areas. However, high energy cost consumption by the rainwater harvesting systems results in higher management costs which may derail the investment viability of these systems in households. This prompted this study to establish ways through which the management cost of rainwater harvesting systems can be minimized in household buildings. A survey of 200 households from Greenspan, Komarock, Utawala, Kileleshwa and Runda in Nairobi?County was undertaken as?well?as?data?on?the?type?of?rainwater harvesting?systems, their operation and maintenance cost collected using observation checklists and questionnaires. The findings indicated that rainwater harvesting typologies 1, 2, 4 and 5 had their water pumped from first-level storage to the second-level storage then supplied to usage points by gravity. Whereas, typologies 3 and 6 had their water moved manually and by gravity respectively. On annual operation cost, 100% of households with typology 3 and 6 spent no money whereas, 100%, 75% and 70.6% with typology 4 and 5, 1 and 2 respectively spent Ksh. 1?-?5000. On annual maintenance cost, 100%, 93.7% and 77.8% of households with typology 5 and 6, 3 and 4 respectively spent Ksh. 1?-?5000 while 25% and 22.2% of households with typology 1 and 2 respectively spent Ksh. 5000?-?10,000. Advanced typology 6 with one-level storage point supplies rainwater to all parts of the household by gravity. This eliminates operation costs spent on energy consumption due to pumping of water,?thus minimizing overall management cost spent on rainwater harvesting systems in household buildings. 展开更多
关键词 Energy CONSUMPTION Management Cost rainwater harvesting RETICULATION System
下载PDF
Analysis of Rooftop Rainwater Harvesting in Kabul New City: A Case Study for Family Houses and Educational Facilities
17
作者 Obaidullah Rahimi Keisuke Murakami 《Open Journal of Civil Engineering》 2018年第2期155-165,共11页
The Afghan government has planned the project of Kabul New City (KNC) to cope with the rapid growth of Kabul, an existing capital city. Due to climatic and topographical reasons, it is supposed that KNC suffers from a... The Afghan government has planned the project of Kabul New City (KNC) to cope with the rapid growth of Kabul, an existing capital city. Due to climatic and topographical reasons, it is supposed that KNC suffers from a water scarcity problem. This study investigates the feasibility of a rooftop rainwater harvesting system in KNC to relieve the water scarcity problem. An applicability of the rooftop rainwater harvesting system was discussed for several types of residential houses and schools, using 11 years rainfall data. This study also examined the cost-effectiveness of the system by considering the service life of the system. Furthermore, an optimal size of the rainwater storage tank was discussed based on the balance among harvested rainwater volume, non-potable water demand, and cost-effectiveness. 展开更多
关键词 Rooftop rainwater harvesting Kabul New CITY Non-Potable WATER COST-EFFECTIVENESS
下载PDF
Strategies for Household Water Supply Improvement with Rainwater Harvesting
18
作者 Tulinave Burton Mwamila Zacharia Katambara Moo Young Han 《Journal of Geoscience and Environment Protection》 2016年第9期146-158,共13页
There are significant household water supply challenges including quantity sufficiency and quality, which have economic and social implications. The challenges have remained despite the efforts of government establish... There are significant household water supply challenges including quantity sufficiency and quality, which have economic and social implications. The challenges have remained despite the efforts of government establishing centralized or groundwater systems, and/or having individual crude systems. A Tanzanian rural household case study was considered by assessing the performance of a currently relied surface runoff collecting pond system for domestic purposes. A daily water balance model was applied with performance parameters, no water days (NWD) and rainwater usage (RUR). Rooftop runoff harvesting system was proposed as a water supply source in addition to the current one. Under such dual supply conditions, users can meet the drinking and non-drinking demand even in dry seasons at a minimum of 2 and 20 L/person/d, respectively. For rainwater harvesting adoption (considering selected regions), it was further established that amount and variation in rainfall impacts on quantity available for meeting demand. Increased catchment implies increased harvestable quantity, and with same storage higher reduction of number of NWD although with slight decrease of RUR. Also, increased storage is required for achieving higher RUR in case the same demand is maintained. But same storage can be maintained for increased demand relative to catchment size. However, rainwater catchment increase has greater impact on meeting a specified demand under given condition of rainfall quantity and variation. The RWH technology strategies presented in this study are replicable in other developing countries under site specific conditions. 展开更多
关键词 Dual Water Supply Household Water Supply rainwater harvesting Strategies rainwater harvesting Technology Tanzania
下载PDF
Socio-Economic and Environmental Impacts Assessment of Using Different Rainwater Harvesting Techniques in Sarida Catchment, West Bank, Palestine
19
作者 Marwan Ghaleb Ghanem Wasim Ahmed +1 位作者 Sameer Shadeed Michel Riksen 《Journal of Geographical Research》 2020年第2期1-5,共5页
A statistically representative questionnaire targeted people using rainwater harvesting(RWH)techniques in rural communities of Sarida catchment,West Bank,Palestine was distributed and analyzed.The main objective of th... A statistically representative questionnaire targeted people using rainwater harvesting(RWH)techniques in rural communities of Sarida catchment,West Bank,Palestine was distributed and analyzed.The main objective of this study is to assess the social,economic,and environmental impacts of adopting RWH techniques(e.g.cisterns,concrete and clay ponds,Wadi ponds,earth dams,and stone terraces)in different uses to increase water availability.The results showed a simple sharing of the female component among beneficiaries,while concrete ponds and cisterns were the most used techniques.Actually,social impacts were noticeable by sharing the same RWH structure and reflected to responsibility skills and role exchange increases.On the other hand,RWH techniques showed a significant economic impact for end users represented by enhancing domestic,agricultural,and recreational activities leading to good profit increase.In addition to food security as output,the most important environmental impact was water wasting prevention,which in turn could be linked to sustainable water management and considered as universal challenge for future generations. 展开更多
关键词 rainwater harvesting SOCIAL ECONOMIC ENVIRONMENT Food security Sarida West Bank Palestine
下载PDF
Rainwater Harvesting in Multifamily Social Interest Housing
20
作者 Regina Lucia Melo de Oliveira Marilia Karla da Silva Santos Simone Rosa da Silva 《Journal of Civil Engineering and Architecture》 2015年第10期1261-1268,共8页
关键词 雨水收集系统 社会利益 住房 收获 固定费用 调查数据 SIH 复合物
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部