In this paper, based on in-situ observational data of the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan'Plateau (CAMP-Tibet), structure of the Atmospheric Bou...In this paper, based on in-situ observational data of the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan'Plateau (CAMP-Tibet), structure of the Atmospheric Boundary Layer (ABL) was preliminarily studied during the dry and rainy seasons. The main results show: (a) Diurnal variation of the ABL is obvious over the northern Tibetan Plateau area. The height of the ABL is different with the season change, which ranges from 2,211 m to 4,430 m during the pre-monsoon season and from 1,006 m to 2,212 m during the monsoon season. The ABL height is higher during the dry period than during the rainyigeriod. (b) The humidity is lower during the dry period than during the rainy period, and there are reverse humidity during both periods. (c) Horizontal wind direction is mostly west during the dry period, east under the height of 2,500 m and west above the height of 2,500 m during the rainy period. The wind speed is low during both the rainy and dry periods in the lower ABL layer. The wind speed is stronger within the upper ABL during the dry period than dtn-ing the rainy period.展开更多
Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identi...Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identification methods of defining the annual beginning and ending dates of Northeast China CV and MS rainy periods are developed respectively. The annual beginning date of the CV (MS) rainy period is as follows. In a period from April to August, if daily regional mean precipitation ryi is larger than yearly regional mean precipitation R (or 2R) on a certain day, the station precipitation rs is larger than the station yearly mean precipitation (r/ (or 2(r)) in at least 50% of stations in Northeast China, and this condition is satisfied in the following 2 (7) days, then this date is defined as the beginning date of the CV (MS) rainy period. While the definition of the ending date of the MS rainy period shows the opposite process to its beginning date. With this objective identification method, the multi-year average (1981-2010) beginning date of the CV rainy period is May 3, the beginning date of the MS rainy period is June 27, the ending day of the CV rainy period is defined as the day before the beginning date of the MS rainy period, and the ending date of the MS rainy period is August 29. Meanwhile, corresponding anomaly analysis at a 500-hPa geopotential height, 850-hPa wind, Omega and relative humidity fields all show that the definitions of the average beginning and ending dates of the CV and MS rainy periods have a certain circulation meaning. Furthermore, the daily evolution of the CV index, meridional and zonal wind index, etc. all show that these objectively defined beginning and ending dates of the CV and MS rainy periods have climate significance.展开更多
The sustained rainfall process on May 13-22, 2004 was one of the pre-summcr rainy periods in the south of China. It was related with the genesis and development ofa SW monsoon surge over the Bay of Bengal. From the sy...The sustained rainfall process on May 13-22, 2004 was one of the pre-summcr rainy periods in the south of China. It was related with the genesis and development ofa SW monsoon surge over the Bay of Bengal. From the synoptic analysis it is found that the genesis and development of the SW monsoon surge may be dividod approximately into the initial, developing and decaying stages. During the rainfall the Southern Hemisphere cross-equatorial flow over the Indian Ocean plays a triggering role.展开更多
基金under the auspices of the Chinese National Key Programme for Developing Basic Sciences (2010CB951703)the Chinese National Key Programme for Developing Basic Sciences (2005CB422003)the National Natural Science Foundation of China (41175008, 40810059006 and 40675012)
文摘In this paper, based on in-situ observational data of the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan'Plateau (CAMP-Tibet), structure of the Atmospheric Boundary Layer (ABL) was preliminarily studied during the dry and rainy seasons. The main results show: (a) Diurnal variation of the ABL is obvious over the northern Tibetan Plateau area. The height of the ABL is different with the season change, which ranges from 2,211 m to 4,430 m during the pre-monsoon season and from 1,006 m to 2,212 m during the monsoon season. The ABL height is higher during the dry period than during the rainyigeriod. (b) The humidity is lower during the dry period than during the rainy period, and there are reverse humidity during both periods. (c) Horizontal wind direction is mostly west during the dry period, east under the height of 2,500 m and west above the height of 2,500 m during the rainy period. The wind speed is low during both the rainy and dry periods in the lower ABL layer. The wind speed is stronger within the upper ABL during the dry period than dtn-ing the rainy period.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41205040 and 41375078)the State Key Development Program for Basic Research,China(Grant No.2012CB955203)the Special Scientific Research Project for Public Interest(Grant No.GYHY201306021)
文摘Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identification methods of defining the annual beginning and ending dates of Northeast China CV and MS rainy periods are developed respectively. The annual beginning date of the CV (MS) rainy period is as follows. In a period from April to August, if daily regional mean precipitation ryi is larger than yearly regional mean precipitation R (or 2R) on a certain day, the station precipitation rs is larger than the station yearly mean precipitation (r/ (or 2(r)) in at least 50% of stations in Northeast China, and this condition is satisfied in the following 2 (7) days, then this date is defined as the beginning date of the CV (MS) rainy period. While the definition of the ending date of the MS rainy period shows the opposite process to its beginning date. With this objective identification method, the multi-year average (1981-2010) beginning date of the CV rainy period is May 3, the beginning date of the MS rainy period is June 27, the ending day of the CV rainy period is defined as the day before the beginning date of the MS rainy period, and the ending date of the MS rainy period is August 29. Meanwhile, corresponding anomaly analysis at a 500-hPa geopotential height, 850-hPa wind, Omega and relative humidity fields all show that the definitions of the average beginning and ending dates of the CV and MS rainy periods have a certain circulation meaning. Furthermore, the daily evolution of the CV index, meridional and zonal wind index, etc. all show that these objectively defined beginning and ending dates of the CV and MS rainy periods have climate significance.
基金Research Fund for National Basic Research "The Theory and Method to Monitor and ForecastRainstorms Causing Floods in South China" (2004CB418305)
文摘The sustained rainfall process on May 13-22, 2004 was one of the pre-summcr rainy periods in the south of China. It was related with the genesis and development ofa SW monsoon surge over the Bay of Bengal. From the synoptic analysis it is found that the genesis and development of the SW monsoon surge may be dividod approximately into the initial, developing and decaying stages. During the rainfall the Southern Hemisphere cross-equatorial flow over the Indian Ocean plays a triggering role.