To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerica...To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerically analyze the effects of geometric parameters on the inlet mass flow rate of RSIs. The geometric parameters in question here encompass the aspect ratio of 2—4,the ramp angle of 6°—7°,the characteristic parameter of the throat of 0.20 —0.30,the ramp length of 939—1 337 mm,and the cone angle of 0° —3°. Simulation results demonstrate that the mass flow rate(MFR)is positively correlated with the aspect ratio,ramp angle,ramp length,and cone angle,and negatively correlated with characteristic parameter of the throat. Within the range of the geometric parameters considered,the RSI with the aspect ratio of 3,the ramp angle of 6°,the characteristic parameter of the throat of 0.20,the ramp length of 1 337 mm,and the cone angle of 3° obtains the largest MFR value of about 2.251 kg/s.展开更多
This study focuses on the aerodynamic characteristics and flow mechanism of three different configurations of ram-air parafoil with open/closed air inlet and bulges. Firstly, we designed a special parafoil configurati...This study focuses on the aerodynamic characteristics and flow mechanism of three different configurations of ram-air parafoil with open/closed air inlet and bulges. Firstly, we designed a special parafoil configuration for this study. Then we used numerical simulation to obtain the aerodynamic data of three parafoils at different angles of attack, and studied the influence of the bulge and the leading edge open/closed inlet on the aerodynamic performance of the ram-air parafoil. Finally, we study the flow mechanism of the ram-air parafoil through the pressure distribution and flow field. The results of the study show that compared with the aerodynamic parameters of the parafoil without bulges, the optimal angle of attack of the two parafoils with bulges is increased by 4?, the maximum lift to drag ratio of the parafoil with closed leading edge is reduced by about 4.3% and the optimal angle of attack is reduced by about 2?. The maximum lift to drag ratio of the parafoil with open leading edge is reduced by about 23.6% and the stalling angle of attack is reduced by about 4?. The pressure on the surface of a ram-air parafoil with open leading edge inlet is the highest. .展开更多
冲压空气涡轮(Ram Air Turbine,RAT)最大释放冲击载荷是飞机结构设计重要参数。当前RAT释放冲击载荷的试验仅试飞或高速风洞试验可以得到,寻找一种有效的RAT最大冲击载荷预测方法很有必要。通过分析得到RAT最大释放冲击载荷的影响因素...冲压空气涡轮(Ram Air Turbine,RAT)最大释放冲击载荷是飞机结构设计重要参数。当前RAT释放冲击载荷的试验仅试飞或高速风洞试验可以得到,寻找一种有效的RAT最大冲击载荷预测方法很有必要。通过分析得到RAT最大释放冲击载荷的影响因素与飞行高度和飞行空速有直接关系,采用线性回归及BP神经网络研究飞行高度和空速对RAT最大释放载荷的影响,并从平均绝对误差及均方根百分误差进行评价。研究将试验及仿真结果作为训练样本,训练完成后将已知输入层参数输入后预测RAT最大释放载荷。对比预测最大释放载荷与试验结果,线性回归预测值平均绝对误差及均方根百分误差小于10%,BP神经网络预测值平均绝对误差及均方根百分误差的平均值小于5%。展开更多
空中加油吊仓多采用"涵道式冲压空气涡轮"(Ducted Ram Air Turbine,以下简称DRAT)作为动力装置。空气涡轮性能的优劣直接影响DRAT的工作性能。为了对吊仓飞行高度以及飞行表速对空气涡轮性能影响进行研究,找到减少涡轮流动损...空中加油吊仓多采用"涵道式冲压空气涡轮"(Ducted Ram Air Turbine,以下简称DRAT)作为动力装置。空气涡轮性能的优劣直接影响DRAT的工作性能。为了对吊仓飞行高度以及飞行表速对空气涡轮性能影响进行研究,找到减少涡轮流动损失,提高系统的输出功率和效率的方法。采用NUMECA软件对涡轮流动进行叶轮机械数值仿真,对涡轮飞行包线内性能变化进行分析,得到了涡轮在飞行包线内的最小功率点和对应的最小功率,并通过对空气涡轮性能分析,建立一套关于空气涡轮性能的可行和实用的数值仿真方法。展开更多
基金supported by the Open Project of Key Laboratory of Aircraft Environment Control and Life Support,MIIT(No.KLAECLS-E-202001)。
文摘To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerically analyze the effects of geometric parameters on the inlet mass flow rate of RSIs. The geometric parameters in question here encompass the aspect ratio of 2—4,the ramp angle of 6°—7°,the characteristic parameter of the throat of 0.20 —0.30,the ramp length of 939—1 337 mm,and the cone angle of 0° —3°. Simulation results demonstrate that the mass flow rate(MFR)is positively correlated with the aspect ratio,ramp angle,ramp length,and cone angle,and negatively correlated with characteristic parameter of the throat. Within the range of the geometric parameters considered,the RSI with the aspect ratio of 3,the ramp angle of 6°,the characteristic parameter of the throat of 0.20,the ramp length of 1 337 mm,and the cone angle of 3° obtains the largest MFR value of about 2.251 kg/s.
文摘This study focuses on the aerodynamic characteristics and flow mechanism of three different configurations of ram-air parafoil with open/closed air inlet and bulges. Firstly, we designed a special parafoil configuration for this study. Then we used numerical simulation to obtain the aerodynamic data of three parafoils at different angles of attack, and studied the influence of the bulge and the leading edge open/closed inlet on the aerodynamic performance of the ram-air parafoil. Finally, we study the flow mechanism of the ram-air parafoil through the pressure distribution and flow field. The results of the study show that compared with the aerodynamic parameters of the parafoil without bulges, the optimal angle of attack of the two parafoils with bulges is increased by 4?, the maximum lift to drag ratio of the parafoil with closed leading edge is reduced by about 4.3% and the optimal angle of attack is reduced by about 2?. The maximum lift to drag ratio of the parafoil with open leading edge is reduced by about 23.6% and the stalling angle of attack is reduced by about 4?. The pressure on the surface of a ram-air parafoil with open leading edge inlet is the highest. .
文摘冲压空气涡轮(Ram Air Turbine,RAT)最大释放冲击载荷是飞机结构设计重要参数。当前RAT释放冲击载荷的试验仅试飞或高速风洞试验可以得到,寻找一种有效的RAT最大冲击载荷预测方法很有必要。通过分析得到RAT最大释放冲击载荷的影响因素与飞行高度和飞行空速有直接关系,采用线性回归及BP神经网络研究飞行高度和空速对RAT最大释放载荷的影响,并从平均绝对误差及均方根百分误差进行评价。研究将试验及仿真结果作为训练样本,训练完成后将已知输入层参数输入后预测RAT最大释放载荷。对比预测最大释放载荷与试验结果,线性回归预测值平均绝对误差及均方根百分误差小于10%,BP神经网络预测值平均绝对误差及均方根百分误差的平均值小于5%。
文摘空中加油吊仓多采用"涵道式冲压空气涡轮"(Ducted Ram Air Turbine,以下简称DRAT)作为动力装置。空气涡轮性能的优劣直接影响DRAT的工作性能。为了对吊仓飞行高度以及飞行表速对空气涡轮性能影响进行研究,找到减少涡轮流动损失,提高系统的输出功率和效率的方法。采用NUMECA软件对涡轮流动进行叶轮机械数值仿真,对涡轮飞行包线内性能变化进行分析,得到了涡轮在飞行包线内的最小功率点和对应的最小功率,并通过对空气涡轮性能分析,建立一套关于空气涡轮性能的可行和实用的数值仿真方法。