This paper proposes an improved optimal operation planning method for residential PEFC-CGS (Polymer Electrolyte Fuel CellCo-Generation System). Residential PEFC-CGS has recently been gathering attention as one of the ...This paper proposes an improved optimal operation planning method for residential PEFC-CGS (Polymer Electrolyte Fuel CellCo-Generation System). Residential PEFC-CGS has recently been gathering attention as one of the distributed power sources with high efficiency and low environmental impacts. Previous research pointed out that the output variations of PEFC adversely affect the durability. It can be surmised that smaller output variations will be desired to extend durability years. However, in this field, ramping rate have not been sufficiently considered. For local search and tabu search, ramping rate constraint makes our operation planning difficult because it restricts the search for feasible neighborhood solutions. Therefore, the authors proposed a method to deal with typical and harsher ramping rate constraints in comparison with conventional methods. There are two key points for the improvement. One is the reinforcement of the search along the output power axis;the other is to make use of the strategy of tabu search which avoids the local optimal solutions. The simulation results show the effectiveness of the proposed method in the daily operation planning. Furthermore, in the case using typical ramping rate parameter, it is confirmed that tabu search doesn’t contribute the reduction of daily operational cost due to the above stated restriction of the search area.展开更多
This paper deals with a Unit Commitment (UC) problem of a power plant aimed to find the optimal scheduling of the generating units involving cubic cost functions. The problem has non convex generator characteristics, ...This paper deals with a Unit Commitment (UC) problem of a power plant aimed to find the optimal scheduling of the generating units involving cubic cost functions. The problem has non convex generator characteristics, which makes it very hard to handle the corresponding mathematical models. However, Teaching Learning Based Optimization (TLBO) has reached a high efficiency, in terms of solution accuracy and computing time for such non convex problems. Hence, TLBO is applied for scheduling of generators with higher order cost characteristics, and turns out to be computationally solvable. In particular, we represent a model that takes into account the accurate higher order generator cost functions along with ramp limits, and turns to be more general and efficient than those available in the literature. The behavior of the model is analyzed through proposed technique on modified IEEE-24 bus system.展开更多
This paper uses the cellular automaton model to study the dynamics of traffic flow around an on-ramp with an acceleration lane. It adopts a parameter, which can reflect different lane-changing behaviour, to represent ...This paper uses the cellular automaton model to study the dynamics of traffic flow around an on-ramp with an acceleration lane. It adopts a parameter, which can reflect different lane-changing behaviour, to represent the diversity of driving behaviour. The refined cellular automaton model is used to describe the lower acceleration rate of a vehicle. The phase diagram and the capacity of the on-ramp system are investigated. The simulation results show that in the single cell model, the capacity of the on-ramp system will stay at the highest flow of a one lane system when the driver is moderate and careful; it will be reduced when the driver is aggressive. In the refined cellular automaton model, the capacity is always reduced even when the driver is careful. It proposes that the capacity drop of the on-ramp system is caused by aggressive lane-changing behaviour and lower acceleration rate.展开更多
文摘This paper proposes an improved optimal operation planning method for residential PEFC-CGS (Polymer Electrolyte Fuel CellCo-Generation System). Residential PEFC-CGS has recently been gathering attention as one of the distributed power sources with high efficiency and low environmental impacts. Previous research pointed out that the output variations of PEFC adversely affect the durability. It can be surmised that smaller output variations will be desired to extend durability years. However, in this field, ramping rate have not been sufficiently considered. For local search and tabu search, ramping rate constraint makes our operation planning difficult because it restricts the search for feasible neighborhood solutions. Therefore, the authors proposed a method to deal with typical and harsher ramping rate constraints in comparison with conventional methods. There are two key points for the improvement. One is the reinforcement of the search along the output power axis;the other is to make use of the strategy of tabu search which avoids the local optimal solutions. The simulation results show the effectiveness of the proposed method in the daily operation planning. Furthermore, in the case using typical ramping rate parameter, it is confirmed that tabu search doesn’t contribute the reduction of daily operational cost due to the above stated restriction of the search area.
文摘This paper deals with a Unit Commitment (UC) problem of a power plant aimed to find the optimal scheduling of the generating units involving cubic cost functions. The problem has non convex generator characteristics, which makes it very hard to handle the corresponding mathematical models. However, Teaching Learning Based Optimization (TLBO) has reached a high efficiency, in terms of solution accuracy and computing time for such non convex problems. Hence, TLBO is applied for scheduling of generators with higher order cost characteristics, and turns out to be computationally solvable. In particular, we represent a model that takes into account the accurate higher order generator cost functions along with ramp limits, and turns to be more general and efficient than those available in the literature. The behavior of the model is analyzed through proposed technique on modified IEEE-24 bus system.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No.2006CB705500)the National Natural Science Foundation of China (Grant Nos.70631001,70501004 and 70701004)+1 种基金Program for New Century Excellent Talents in University (Grant No.NCET-07-0057)the Innovation Foundation of Science and Technology for Excellent Doctorial Candidate of Beijing Jiaotong University (Grant No.48025)
文摘This paper uses the cellular automaton model to study the dynamics of traffic flow around an on-ramp with an acceleration lane. It adopts a parameter, which can reflect different lane-changing behaviour, to represent the diversity of driving behaviour. The refined cellular automaton model is used to describe the lower acceleration rate of a vehicle. The phase diagram and the capacity of the on-ramp system are investigated. The simulation results show that in the single cell model, the capacity of the on-ramp system will stay at the highest flow of a one lane system when the driver is moderate and careful; it will be reduced when the driver is aggressive. In the refined cellular automaton model, the capacity is always reduced even when the driver is careful. It proposes that the capacity drop of the on-ramp system is caused by aggressive lane-changing behaviour and lower acceleration rate.