The past decade witnessed rapid development of constraint satisfaction technologies, where algorithms are now able to cope with larger and harder problems. However, owing to the fact that constraints are inherently de...The past decade witnessed rapid development of constraint satisfaction technologies, where algorithms are now able to cope with larger and harder problems. However, owing to the fact that constraints are inherently declarative, attention is quickly turning toward developing high-level programming languages within which such problems can be modeled and also solved. Along these lines, this paper presents DEPICT, the language. Its use is illustrated through modeling a number of benchmark examples. The paper continues with a description of a prototype system within which such models may be interpreted. The paper concludes with a description of a sample run of this interpreter showing how a problem modeled as such is typically solved.展开更多
This study presents a decision-support tool for preliminary design of a horizontal wind turbine system. The function of this tool is to assist the various actors in making decisions about choices inherent to their act...This study presents a decision-support tool for preliminary design of a horizontal wind turbine system. The function of this tool is to assist the various actors in making decisions about choices inherent to their activities in the field of wind energy. Wind turbine cost and site characteristics are taken into account in the used models which are mainly based on the engineering knowledge. The present tool uses a constraint-modelling technique in combination with a CSP solver (numerical CSPs which are based on an arithmetic interval). In this way, it generates solutions and automatically performs the concept selection and costing of a given wind turbine. The data generated by the tool and required for decision making are: the quality index of solution (wind turbine), the amount of energy produced, the total cost of the wind turbine and the design variables which define the architecture of the wind turbine system. When applied to redesign a standard wind turbine in adequacy with a given site, the present tool proved both its ability to implement constraint modelling and its usefulness in conducting an appraisal.展开更多
基金This work was supported by Lebanese National Council for Scientific Research.
文摘The past decade witnessed rapid development of constraint satisfaction technologies, where algorithms are now able to cope with larger and harder problems. However, owing to the fact that constraints are inherently declarative, attention is quickly turning toward developing high-level programming languages within which such problems can be modeled and also solved. Along these lines, this paper presents DEPICT, the language. Its use is illustrated through modeling a number of benchmark examples. The paper continues with a description of a prototype system within which such models may be interpreted. The paper concludes with a description of a sample run of this interpreter showing how a problem modeled as such is typically solved.
文摘This study presents a decision-support tool for preliminary design of a horizontal wind turbine system. The function of this tool is to assist the various actors in making decisions about choices inherent to their activities in the field of wind energy. Wind turbine cost and site characteristics are taken into account in the used models which are mainly based on the engineering knowledge. The present tool uses a constraint-modelling technique in combination with a CSP solver (numerical CSPs which are based on an arithmetic interval). In this way, it generates solutions and automatically performs the concept selection and costing of a given wind turbine. The data generated by the tool and required for decision making are: the quality index of solution (wind turbine), the amount of energy produced, the total cost of the wind turbine and the design variables which define the architecture of the wind turbine system. When applied to redesign a standard wind turbine in adequacy with a given site, the present tool proved both its ability to implement constraint modelling and its usefulness in conducting an appraisal.