The surface morphology and roughness of a workpiece are crucial parameters in grinding processes.Accurate prediction of these parameters is essential for maintaining the workpiece’s surface integrity.However,the rand...The surface morphology and roughness of a workpiece are crucial parameters in grinding processes.Accurate prediction of these parameters is essential for maintaining the workpiece’s surface integrity.However,the randomness of abrasive grain shapes and workpiece surface formation behaviors poses significant challenges,and accuracy in current physical mechanism-based predictive models is needed.To address this problem,by using the random plane method and accounting for the random morphology and distribution of abrasive grains,this paper proposes a novel method to model CBN grinding wheels and predict workpiece surface roughness.First,a kinematic model of a single abrasive grain is developed to accurately capture the three-dimensional morphology of the grinding wheel.Next,by formulating an elastic deformation and formation model of the workpiece surface based on Hertz theory,the variation in grinding arc length at different grinding depths is revealed.Subsequently,a predictive model for the surface morphology of the workpiece ground by a single abrasive grain is devised.This model integrates the normal distribution model of abrasive grain size and the spatial distribution model of abrasive grain positions,to elucidate how the circumferential and axial distribution of abrasive grains influences workpiece surface formation.Lastly,by integrating the dynamic effective abrasive grain model,a predictive model for the surface morphology and roughness of the grinding wheel is established.To examine the impact of changing the grit size of the grinding wheel and grinding depth on workpiece surface roughness,and to validate the accuracy of the model,experiments are conducted.Results indicate that the predicted three-dimensional morphology of the grinding wheel and workpiece surfaces closely matches the actual grinding wheel and ground workpiece surfaces,with surface roughness prediction deviations as small as 2.3%.展开更多
Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using general...Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time.展开更多
In this paper, a model averaging method is proposed for varying-coefficient models with response missing at random by establishing a weight selection criterion based on cross-validation. Under certain regularity condi...In this paper, a model averaging method is proposed for varying-coefficient models with response missing at random by establishing a weight selection criterion based on cross-validation. Under certain regularity conditions, it is proved that the proposed method is asymptotically optimal in the sense of achieving the minimum squared error.展开更多
The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and d...The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and duration features. When the tone model is integrated into continuous speech recognition, the discriminative model weight training (DMWT) is proposed. Acoustic and tone scores are scaled by model weights discriminatively trained by the minimum phone error (MPE) criterion. Two schemes of weight training are evaluated and a smoothing technique is used to make training robust to overtraining problem. Experiments show that the accuracies of tone recognition and large vocabulary continuous speech recognition (LVCSR) can be improved by the HCRFs based tone model. Compared with the global weight scheme, continuous speech recognition can be improved by the discriminative trained weight combinations.展开更多
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de...This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.展开更多
In this paper, a compound binomial model with a constant dividend barrier and random income is considered. Two types of individual claims, main claims and by-claims, are defined, where every by-claim is induced by the...In this paper, a compound binomial model with a constant dividend barrier and random income is considered. Two types of individual claims, main claims and by-claims, are defined, where every by-claim is induced by the main claim and may be delayed for one time period with a certain probability. The premium income is assumed to another binomial process to capture the uncertainty of the customer's arrivals and payments. A system of difference equations with certain boundary conditions for the expected present value of total dividend payments prior to ruin is derived and solved. Explicit results are obtained when the claim sizes are Kn distributed or the claim size distributions have finite support. Numerical results are also provided to illustrate the impact of the delay of by-claims on the expected present value of dividends.展开更多
The dual random models about the life insurance and social pension insurance have received considerable attention in the recent articles on actuarial theory and applications. This paper discusses a general kind of inc...The dual random models about the life insurance and social pension insurance have received considerable attention in the recent articles on actuarial theory and applications. This paper discusses a general kind of increasing annuity based on its force of interest accumulation function as a general random process. The dual random model of the present value of the benefits of the increasing annuity has been set, and their moments have been calculated under certain conditions.展开更多
In this paper,a unified diagnostic method for the nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991 is presented.It is shown that the case deletion model is equivalent to t...In this paper,a unified diagnostic method for the nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991 is presented.It is shown that the case deletion model is equivalent to the mean shift outlier model.From this point of view,several diagnostic measures,such as Cook distance,score statistics are derived.The local influence measure of Cook is also presented. A numerical example illustrates that the method is available.展开更多
Bayes decision rule of variance components for one-way random effects model is derived and empirical Bayes (EB) decision rules are constructed by kernel estimation method. Under suitable conditions, it is shown that t...Bayes decision rule of variance components for one-way random effects model is derived and empirical Bayes (EB) decision rules are constructed by kernel estimation method. Under suitable conditions, it is shown that the proposed EB decision rules are asymptotically optimal with convergence rates near O(n-1/2). Finally, an example concerning the main result is given.展开更多
According to the theoretical solutions for the nonlinear three-dimensional gravity surface waves and their interactions with vertical wall previously proposed by the lead author, in this paper an exact second-order ra...According to the theoretical solutions for the nonlinear three-dimensional gravity surface waves and their interactions with vertical wall previously proposed by the lead author, in this paper an exact second-order random model of the unified wave motion process for nonlinear irregular waves and their interactions with vertical wall in uniform current is formulated, the corresponding theoretical nonlinear spectrum is derived, and the digital simulation model suitable to the use of the FFT (Fast Fourier Transform) algorithm is also given. Simulations of wave surface, wave pressure, total wave pressure and its moment are performed. The probability properties and statistical characteristics of these realizations are tested, which include the verifications of normality for linear process and of non-normality for nonlinear process; the consistencies of the theoretical spectra with simulated ones; the probability properties of apparent characteristics, such as amplitudes, periods, and extremes (maximum and minimum, positive and negative extremes). The statistical analysis and comparisons demonstrate that the proposed theoretical and computing models are realistic and effective, and estimated spectra are in good agreement with the theoretical ones, and the probability properties of the simulated waves are similar to those of the sea waves. At the same time, the simulating computation can be completed rapidly and easily.展开更多
This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991. The authors show that the case deletion model is equivale...This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991. The authors show that the case deletion model is equivalent to mean shift outlier model. From this point of view, several diagnostic measures, such as Cook distance, score statistics are derived. The local influence measure of Cook is also presented. Numerical example illustrates that our method is available.展开更多
The propagation and transformation of multi-directional and uni-directional random waves over a coast with complicated bathymetric and geometric features are studied experimentally and numerically. Laboratory investig...The propagation and transformation of multi-directional and uni-directional random waves over a coast with complicated bathymetric and geometric features are studied experimentally and numerically. Laboratory investigation indicates that wave energy convergence and divergence cause strong coastal currents to develop and inversely modify the wave fields. A coastal spectral wave model, based on the wave action balance equation with diffraction effect (WABED), is used to simulate the transformation of random waves over the complicated bathymetry. The diffraction effect in the wave model is derived from a parabolic approximation of wave theory, and the mean energy dissipation rate per unit horizontal area due to wave breaking is parameterized by the bore-based formulation with a breaker index of 0.73. The numerically simulated wave field without considering coastal currents is different from that of experiments, whereas model results considering currents clearly reproduce the intensification of wave height in front of concave shorelines.展开更多
In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the...In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the distributed-free optimal linear estimator of random parameters in the model by means of the credibility theory method. The estimators the authors derive can be applied in more extensive practical scenarios since they are only dependent on the first two moments of prior parameter rather than on specific prior distribution. Finally, the results are compared with some classical models and a numerical example is given to show the effectiveness of the estimators.展开更多
In this paper, some experimental studies on the impact of effluent from an exhaust tower of an underground tunnel with special construction are reported. By measuring the flow field downstream of the tower in NJU mete...In this paper, some experimental studies on the impact of effluent from an exhaust tower of an underground tunnel with special construction are reported. By measuring the flow field downstream of the tower in NJU meteorological wind tunnel, some flow characteristics in the make area were established. Based on these, an advanced random\|walk dispersion model was set up and applied successfully to the simulation of dispersion in the wake area. The modelling results were in accordance with wind tunnel measurements. The computed maximum of ground surface concentration in the building case was a factor of 3-4 higher than that in the flat case and appeared much closer to the source. The simulation indicated that random walk modelling is an effective and practical tool for the wake stream impact assessment.展开更多
The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Final...The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Finally, under an algebraic constraint condition, the equivalencebetween the two-stage Kalman estimator and the optimal augmented state Kalman filter is proved.Thereby, the algebraic constraint conditions of optimal two-stage state estimation in the presence ofARMA model random bias are given.展开更多
The spin-1 Blume–Capel model with transverse and longitudinal external magnetic fields h, in addition to a longitudinal random crystal field D, is studied in the mean-field approximation. It is assumed that the cryst...The spin-1 Blume–Capel model with transverse and longitudinal external magnetic fields h, in addition to a longitudinal random crystal field D, is studied in the mean-field approximation. It is assumed that the crystal field is either turned on with probability p or turned off with probability 1 p on the sites of a square lattice. Phase diagrams are then calculated on the reduced temperature crystal field planes for given values of γ=Ω/J and p at zero h. Thus, the effect of changing γ and p are illustrated on the phase diagrams in great detail and interesting results are observed.展开更多
As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time de...As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time demand", which may lead to an imprecise inventory cost. Through the real-time statistic of the inventory quantities, this paper considers the precise (Q, τ) inventory cost model of dual supplier procurement by using an infinitesimal dividing method. The traditional modeling method of the inventory cost for dual supplier procurement includes complex procedures. To reduce the complexity effectively, the presented method investigates the statistics properties in real-time of the inventory quantities with the application of the infinitesimal dividing method. It is proved that the optimal holding and shortage costs of dual supplier procurement are less than those of single supplier procurement respectively. With the assumption that both suppliers have the same distribution of lead times, the convexity of the cost function per unit time is proved. So the optimal solution can be easily obtained by applying the classical convex optimization methods. The numerical examples are given to verify the main conclusions.展开更多
In this paper, an approach to predicting randomly-shaped particle volume based on its two- Dimensional (2-D) digital image is explored. Conversion of gray-scale image of the particles to its binary counterpart is fi...In this paper, an approach to predicting randomly-shaped particle volume based on its two- Dimensional (2-D) digital image is explored. Conversion of gray-scale image of the particles to its binary counterpart is first performed using backlighting technique. The silhouette of particle is thus obtained, and consequently, informative features such as particle area, centroid and shape-related descriptors are collected. Several dimensionless parameters are defined, and used as regressor variables in a multiple linear regression model to predict particle volume. Regressor coefficients are found by fitting to a randomly selected sample of 501 panicles ranging in size from 4.75mm to 25ram. The model testing experiment is conducted against a different aggregate sample of the similar statistical properties, the errors of the model-predicted volume of the batch is within ±2%.展开更多
In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. O...In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. One is the individual test and power calculation for varying dispersion through testing the randomness of cluster effects, which is extensions of Dean(1992) and Commenges et al (1994). The second test is the composite test for varying dispersion through simultaneously testing the randomness of cluster effects and the equality of random-effect means. The score test statistics are constructed and expressed in simple, easy to use, matrix formulas. The authors illustrate their test methods using the insecticide data (Giltinan, Capizzi & Malani (1988)).展开更多
基金Supported by Special Fund of Taishan Scholars Project(Grant No.tsqn202211179)National Natural Science Foundation of China(Grant No.52105457)+2 种基金Shandong Provincial Young Talent of Lifting Engineering for Science and Technology(Grant No.SDAST2021qt12)National Natural Science Foundation of China(Grant No.52375447)China Postdoctoral Science Foundation Funded Project(Grant No.2023M732826).
文摘The surface morphology and roughness of a workpiece are crucial parameters in grinding processes.Accurate prediction of these parameters is essential for maintaining the workpiece’s surface integrity.However,the randomness of abrasive grain shapes and workpiece surface formation behaviors poses significant challenges,and accuracy in current physical mechanism-based predictive models is needed.To address this problem,by using the random plane method and accounting for the random morphology and distribution of abrasive grains,this paper proposes a novel method to model CBN grinding wheels and predict workpiece surface roughness.First,a kinematic model of a single abrasive grain is developed to accurately capture the three-dimensional morphology of the grinding wheel.Next,by formulating an elastic deformation and formation model of the workpiece surface based on Hertz theory,the variation in grinding arc length at different grinding depths is revealed.Subsequently,a predictive model for the surface morphology of the workpiece ground by a single abrasive grain is devised.This model integrates the normal distribution model of abrasive grain size and the spatial distribution model of abrasive grain positions,to elucidate how the circumferential and axial distribution of abrasive grains influences workpiece surface formation.Lastly,by integrating the dynamic effective abrasive grain model,a predictive model for the surface morphology and roughness of the grinding wheel is established.To examine the impact of changing the grit size of the grinding wheel and grinding depth on workpiece surface roughness,and to validate the accuracy of the model,experiments are conducted.Results indicate that the predicted three-dimensional morphology of the grinding wheel and workpiece surfaces closely matches the actual grinding wheel and ground workpiece surfaces,with surface roughness prediction deviations as small as 2.3%.
文摘Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time.
文摘In this paper, a model averaging method is proposed for varying-coefficient models with response missing at random by establishing a weight selection criterion based on cross-validation. Under certain regularity conditions, it is proved that the proposed method is asymptotically optimal in the sense of achieving the minimum squared error.
文摘The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and duration features. When the tone model is integrated into continuous speech recognition, the discriminative model weight training (DMWT) is proposed. Acoustic and tone scores are scaled by model weights discriminatively trained by the minimum phone error (MPE) criterion. Two schemes of weight training are evaluated and a smoothing technique is used to make training robust to overtraining problem. Experiments show that the accuracies of tone recognition and large vocabulary continuous speech recognition (LVCSR) can be improved by the HCRFs based tone model. Compared with the global weight scheme, continuous speech recognition can be improved by the discriminative trained weight combinations.
基金This work was supported in part by the National Natural Science Foundation of China(61601418,41602362,61871259)in part by the Opening Foundation of Hunan Engineering and Research Center of Natural Resource Investigation and Monitoring(2020-5)+1 种基金in part by the Qilian Mountain National Park Research Center(Qinghai)(grant number:GKQ2019-01)in part by the Geomatics Technology and Application Key Laboratory of Qinghai Province,Grant No.QHDX-2019-01.
文摘This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.
基金supported by the NSFC(11171101)Doctoral Fund of Education Ministry of China(20104306110001)the Graduate Research and Innovation Fund of Hunan Province(CX2011B197)
文摘In this paper, a compound binomial model with a constant dividend barrier and random income is considered. Two types of individual claims, main claims and by-claims, are defined, where every by-claim is induced by the main claim and may be delayed for one time period with a certain probability. The premium income is assumed to another binomial process to capture the uncertainty of the customer's arrivals and payments. A system of difference equations with certain boundary conditions for the expected present value of total dividend payments prior to ruin is derived and solved. Explicit results are obtained when the claim sizes are Kn distributed or the claim size distributions have finite support. Numerical results are also provided to illustrate the impact of the delay of by-claims on the expected present value of dividends.
文摘The dual random models about the life insurance and social pension insurance have received considerable attention in the recent articles on actuarial theory and applications. This paper discusses a general kind of increasing annuity based on its force of interest accumulation function as a general random process. The dual random model of the present value of the benefits of the increasing annuity has been set, and their moments have been calculated under certain conditions.
基金The research project supported by NSFC(1 9631 0 4 0 ) and NSFJ
文摘In this paper,a unified diagnostic method for the nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991 is presented.It is shown that the case deletion model is equivalent to the mean shift outlier model.From this point of view,several diagnostic measures,such as Cook distance,score statistics are derived.The local influence measure of Cook is also presented. A numerical example illustrates that the method is available.
基金The project is partly supported by NSFC (19971085)the Doctoral Program Foundation of the Institute of High Education and the Special Foundation of Chinese Academy of Sciences.
文摘Bayes decision rule of variance components for one-way random effects model is derived and empirical Bayes (EB) decision rules are constructed by kernel estimation method. Under suitable conditions, it is shown that the proposed EB decision rules are asymptotically optimal with convergence rates near O(n-1/2). Finally, an example concerning the main result is given.
文摘According to the theoretical solutions for the nonlinear three-dimensional gravity surface waves and their interactions with vertical wall previously proposed by the lead author, in this paper an exact second-order random model of the unified wave motion process for nonlinear irregular waves and their interactions with vertical wall in uniform current is formulated, the corresponding theoretical nonlinear spectrum is derived, and the digital simulation model suitable to the use of the FFT (Fast Fourier Transform) algorithm is also given. Simulations of wave surface, wave pressure, total wave pressure and its moment are performed. The probability properties and statistical characteristics of these realizations are tested, which include the verifications of normality for linear process and of non-normality for nonlinear process; the consistencies of the theoretical spectra with simulated ones; the probability properties of apparent characteristics, such as amplitudes, periods, and extremes (maximum and minimum, positive and negative extremes). The statistical analysis and comparisons demonstrate that the proposed theoretical and computing models are realistic and effective, and estimated spectra are in good agreement with the theoretical ones, and the probability properties of the simulated waves are similar to those of the sea waves. At the same time, the simulating computation can be completed rapidly and easily.
文摘This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991. The authors show that the case deletion model is equivalent to mean shift outlier model. From this point of view, several diagnostic measures, such as Cook distance, score statistics are derived. The local influence measure of Cook is also presented. Numerical example illustrates that our method is available.
基金supported by the Program for New Century Excellent Talents in Universities (Grant No. NCET-07-0255)
文摘The propagation and transformation of multi-directional and uni-directional random waves over a coast with complicated bathymetric and geometric features are studied experimentally and numerically. Laboratory investigation indicates that wave energy convergence and divergence cause strong coastal currents to develop and inversely modify the wave fields. A coastal spectral wave model, based on the wave action balance equation with diffraction effect (WABED), is used to simulate the transformation of random waves over the complicated bathymetry. The diffraction effect in the wave model is derived from a parabolic approximation of wave theory, and the mean energy dissipation rate per unit horizontal area due to wave breaking is parameterized by the bore-based formulation with a breaker index of 0.73. The numerically simulated wave field without considering coastal currents is different from that of experiments, whereas model results considering currents clearly reproduce the intensification of wave height in front of concave shorelines.
基金supported by the National Science Foundation of China under Grant Nos.71361015,71340010,71371074the Jiangxi Provincial Natural Science Foundation under Grant No.20142BAB201013+2 种基金China Postdoctoral Science Foundation under Grant No.2013M540534China Postdoctoral Fund special Project under Grant No.2014T70615Jiangxi Postdoctoral Science Foundation under Grant No.2013KY53
文摘In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the distributed-free optimal linear estimator of random parameters in the model by means of the credibility theory method. The estimators the authors derive can be applied in more extensive practical scenarios since they are only dependent on the first two moments of prior parameter rather than on specific prior distribution. Finally, the results are compared with some classical models and a numerical example is given to show the effectiveness of the estimators.
文摘In this paper, some experimental studies on the impact of effluent from an exhaust tower of an underground tunnel with special construction are reported. By measuring the flow field downstream of the tower in NJU meteorological wind tunnel, some flow characteristics in the make area were established. Based on these, an advanced random\|walk dispersion model was set up and applied successfully to the simulation of dispersion in the wake area. The modelling results were in accordance with wind tunnel measurements. The computed maximum of ground surface concentration in the building case was a factor of 3-4 higher than that in the flat case and appeared much closer to the source. The simulation indicated that random walk modelling is an effective and practical tool for the wake stream impact assessment.
文摘The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Finally, under an algebraic constraint condition, the equivalencebetween the two-stage Kalman estimator and the optimal augmented state Kalman filter is proved.Thereby, the algebraic constraint conditions of optimal two-stage state estimation in the presence ofARMA model random bias are given.
文摘The spin-1 Blume–Capel model with transverse and longitudinal external magnetic fields h, in addition to a longitudinal random crystal field D, is studied in the mean-field approximation. It is assumed that the crystal field is either turned on with probability p or turned off with probability 1 p on the sites of a square lattice. Phase diagrams are then calculated on the reduced temperature crystal field planes for given values of γ=Ω/J and p at zero h. Thus, the effect of changing γ and p are illustrated on the phase diagrams in great detail and interesting results are observed.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2007AA04Z102)the National Natural Science Foundation of China(6087407160574077).
文摘As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time demand", which may lead to an imprecise inventory cost. Through the real-time statistic of the inventory quantities, this paper considers the precise (Q, τ) inventory cost model of dual supplier procurement by using an infinitesimal dividing method. The traditional modeling method of the inventory cost for dual supplier procurement includes complex procedures. To reduce the complexity effectively, the presented method investigates the statistics properties in real-time of the inventory quantities with the application of the infinitesimal dividing method. It is proved that the optimal holding and shortage costs of dual supplier procurement are less than those of single supplier procurement respectively. With the assumption that both suppliers have the same distribution of lead times, the convexity of the cost function per unit time is proved. So the optimal solution can be easily obtained by applying the classical convex optimization methods. The numerical examples are given to verify the main conclusions.
基金Funded by the Zhejiang Provincial Educatrion Ministry (No.2004884), and the Scientific Research Start-up Foundation of Ningbo University (No.2004037).
文摘In this paper, an approach to predicting randomly-shaped particle volume based on its two- Dimensional (2-D) digital image is explored. Conversion of gray-scale image of the particles to its binary counterpart is first performed using backlighting technique. The silhouette of particle is thus obtained, and consequently, informative features such as particle area, centroid and shape-related descriptors are collected. Several dimensionless parameters are defined, and used as regressor variables in a multiple linear regression model to predict particle volume. Regressor coefficients are found by fitting to a randomly selected sample of 501 panicles ranging in size from 4.75mm to 25ram. The model testing experiment is conducted against a different aggregate sample of the similar statistical properties, the errors of the model-predicted volume of the batch is within ±2%.
基金The project supported by NNSFC (19631040), NSSFC (04BTJ002) and the grant for post-doctor fellows in SELF.
文摘In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. One is the individual test and power calculation for varying dispersion through testing the randomness of cluster effects, which is extensions of Dean(1992) and Commenges et al (1994). The second test is the composite test for varying dispersion through simultaneously testing the randomness of cluster effects and the equality of random-effect means. The score test statistics are constructed and expressed in simple, easy to use, matrix formulas. The authors illustrate their test methods using the insecticide data (Giltinan, Capizzi & Malani (1988)).