Cross-diffusion is a ubiquitous phenomenon in complex networks, but it is often neglected in the study of reaction–diffusion networks. In fact, network connections are often random. In this paper, we investigate patt...Cross-diffusion is a ubiquitous phenomenon in complex networks, but it is often neglected in the study of reaction–diffusion networks. In fact, network connections are often random. In this paper, we investigate pattern dynamics of random networks with cross-diffusion by using the method of network analysis and obtain a condition under which the network loses stability and Turing bifurcation occurs. In addition, we also derive the amplitude equation for the network and prove the stability of the amplitude equation which is also an effective tool to investigate pattern dynamics of the random network with cross diffusion. In the meantime, the pattern formation consistently matches the stability of the system and the amplitude equation is verified by simulations. A novel approach to the investigation of specific real systems was presented in this paper. Finally, the example and simulation used in this paper validate our theoretical results.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11272277,11572278,and 11572084)the Innovation Scientists and Technicians Troop Construction Projects of Henan Province,China(Grant No.2017JR0013)
文摘Cross-diffusion is a ubiquitous phenomenon in complex networks, but it is often neglected in the study of reaction–diffusion networks. In fact, network connections are often random. In this paper, we investigate pattern dynamics of random networks with cross-diffusion by using the method of network analysis and obtain a condition under which the network loses stability and Turing bifurcation occurs. In addition, we also derive the amplitude equation for the network and prove the stability of the amplitude equation which is also an effective tool to investigate pattern dynamics of the random network with cross diffusion. In the meantime, the pattern formation consistently matches the stability of the system and the amplitude equation is verified by simulations. A novel approach to the investigation of specific real systems was presented in this paper. Finally, the example and simulation used in this paper validate our theoretical results.