期刊文献+
共找到321篇文章
< 1 2 17 >
每页显示 20 50 100
Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer
1
作者 Shengdong Cheng Juncheng Gao Hongning Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期871-892,共22页
Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical appl... Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical applications.Conventional methods of predicting pile drivability often rely on simplified physicalmodels or empirical formulas,whichmay lack accuracy or applicability in complex geological conditions.Therefore,this study presents a practical machine learning approach,namely a Random Forest(RF)optimized by Bayesian Optimization(BO)and Particle Swarm Optimization(PSO),which not only enhances prediction accuracy but also better adapts to varying geological environments to predict the drivability parameters of piles(i.e.,maximumcompressive stress,maximum tensile stress,and blow per foot).In addition,support vector regression,extreme gradient boosting,k nearest neighbor,and decision tree are also used and applied for comparison purposes.In order to train and test these models,among the 4072 datasets collected with 17model inputs,3258 datasets were randomly selected for training,and the remaining 814 datasets were used for model testing.Lastly,the results of these models were compared and evaluated using two performance indices,i.e.,the root mean square error(RMSE)and the coefficient of determination(R2).The results indicate that the optimized RF model achieved lower RMSE than other prediction models in predicting the three parameters,specifically 0.044,0.438,and 0.146;and higher R^(2) values than other implemented techniques,specifically 0.966,0.884,and 0.977.In addition,the sensitivity and uncertainty of the optimized RF model were analyzed using Sobol sensitivity analysis and Monte Carlo(MC)simulation.It can be concluded that the optimized RF model could be used to predict the performance of the pile,and it may provide a useful reference for solving some problems under similar engineering conditions. 展开更多
关键词 random forest regression model pile drivability Bayesian optimization particle swarm optimization
下载PDF
Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights 被引量:10
2
作者 Hai-tao Chen Wen-chuan Wang +1 位作者 Xiao-nan Chen Lin Qiu 《Water Science and Engineering》 EI CAS CSCD 2020年第2期136-144,共9页
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori... Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified. 展开更多
关键词 particle swarm optimization Genetic algorithm random inertia weight Multi-objective reservoir operation Reservoir group Panjiakou Reservoir
下载PDF
Optimal Control of Slurry Pressure during Shield Tunnelling Based on Random Forest and Particle Swarm Optimization 被引量:5
3
作者 Weiping Luo Dajun Yuan +2 位作者 Dalong Jin Ping Lu Jian Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第7期109-127,共19页
The control of slurry pressure aiming to be consistent with the external water and earth pressure during shield tunnelling has great significance for face stability,especially in urban areas or underwater where the su... The control of slurry pressure aiming to be consistent with the external water and earth pressure during shield tunnelling has great significance for face stability,especially in urban areas or underwater where the surrounding environment is very sensitive to the fluctuation of slurry pressure.In this study,an optimal control method for slurry pressure during shield tunnelling is developed,which is composed of an identifier and a controller.The established identifier based on the random forest(RF)can describe the complex non-linear relationship between slurry pressure and its influencing factors.The proposed controller based on particle swarm optimization(PSO)can optimize the key factor to precisely control the slurry pressure at the normal state of advancement.A data set from Tsinghua Yuan Tunnel in China was used to train the RF model and several performance measures like R2,RMSE,etc.,were employed to evaluate.Then,the hybrid RF-PSO control method is adopted to optimize the control of slurry pressure.The good agreement between optimized slurry pressure and expected values demonstrates a high identifying and control precision. 展开更多
关键词 Shield tunnelling slurry pressure optimal control random forest particle swarm optimization
下载PDF
A Particle Swarm Optimization Algorithm with Variable Random Functions and Mutation 被引量:7
4
作者 ZHOU Xiao-Jun YANG Chun-Hua +1 位作者 GUI Wei-Hua DONG Tian-Xue 《自动化学报》 EI CSCD 北大核心 2014年第7期1339-1347,共9页
关键词 粒子群优化算法 随机变量函数 突变 PSO算法 随机函数 收敛性分析 算法性能 人口密度
下载PDF
A new particle swarm optimization algorithm with random inertia weight and evolution strategy 被引量:1
5
作者 LEI Chong-min GAO Yue-lin DUAN Yu-hong 《通讯和计算机(中英文版)》 2008年第11期42-47,共6页
关键词 通信技术 计算机技术 粒子群优化算法 收敛速度 计算方法
下载PDF
Data-driven production optimization using particle swarm algorithm based on the ensemble-learning proxy model
6
作者 Shu-Yi Du Xiang-Guo Zhao +4 位作者 Chi-Yu Xie Jing-Wei Zhu Jiu-Long Wang Jiao-Sheng Yang Hong-Qing Song 《Petroleum Science》 SCIE EI CSCD 2023年第5期2951-2966,共16页
Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insuffic... Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints. 展开更多
关键词 Production optimization random forest The Bayesian algorithm Ensemble learning particle swarm optimization
下载PDF
Prediction of maximum upward displacement of shield tunnel linings during construction using particle swarm optimization-random forest algorithm
7
作者 Xiaowei YE Xiaolong ZHANG +2 位作者 Yanbo CHEN Yujun WEI Yang DING 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第1期1-17,共17页
During construction,the shield linings of tunnels often face the problem of local or overall upward movement after leaving the shield tail in soft soil areas or during some large diameter shield projects.Differential ... During construction,the shield linings of tunnels often face the problem of local or overall upward movement after leaving the shield tail in soft soil areas or during some large diameter shield projects.Differential floating will increase the initial stress on the segments and bolts which is harmful to the service performance of the tunnel.In this study we used a random forest(RF)algorithm combined particle swarm optimization(PSO)and 5-fold cross-validation(5-fold CV)to predict the maximum upward displacement of tunnel linings induced by shield tunnel excavation.The mechanism and factors causing upward movement of the tunnel lining are comprehensively summarized.Twelve input variables were selected according to results from analysis of influencing factors.The prediction performance of two models,PSO-RF and RF(default)were compared.The Gini value was obtained to represent the relative importance of the influencing factors to the upward displacement of linings.The PSO-RF model successfully predicted the maximum upward displacement of the tunnel linings with a low error(mean absolute error(MAE)=4.04 mm,root mean square error(RMSE)=5.67 mm)and high correlation(R^(2)=0.915).The thrust and depth of the tunnel were the most important factors in the prediction model influencing the upward displacement of the tunnel linings. 展开更多
关键词 random forest(RF) particle swarm optimization(PSO) Upward displacement of lining Machine learning prediction Shieldtunneling construction
原文传递
GRU Enabled Intrusion Detection System for IoT Environment with Swarm Optimization and Gaussian Random Forest Classification
8
作者 Mohammad Shoab Loiy Alsbatin 《Computers, Materials & Continua》 SCIE EI 2024年第10期625-642,共18页
In recent years,machine learning(ML)and deep learning(DL)have significantly advanced intrusion detection systems,effectively addressing potential malicious attacks across networks.This paper introduces a robust method... In recent years,machine learning(ML)and deep learning(DL)have significantly advanced intrusion detection systems,effectively addressing potential malicious attacks across networks.This paper introduces a robust method for detecting and categorizing attacks within the Internet of Things(IoT)environment,leveraging the NSL-KDD dataset.To achieve high accuracy,the authors used the feature extraction technique in combination with an autoencoder,integrated with a gated recurrent unit(GRU).Therefore,the accurate features are selected by using the cuckoo search algorithm integrated particle swarm optimization(PSO),and PSO has been employed for training the features.The final classification of features has been carried out by using the proposed RF-GNB random forest with the Gaussian Naïve Bayes classifier.The proposed model has been evaluated and its performance is verified with some of the standard metrics such as precision,accuracy rate,recall F1-score,etc.,and has been compared with different existing models.The generated results that detected approximately 99.87%of intrusions within the IoT environments,demonstrated the high performance of the proposed method.These results affirmed the efficacy of the proposed method in increasing the accuracy of intrusion detection within IoT network systems. 展开更多
关键词 Machine learning intrusion detection IoT gated recurrent unit particle swarm optimization random forest Gaussian Naïve Bayes
下载PDF
Stochastic focusing search:a novel optimization algorithm for real-parameter optimization 被引量:3
9
作者 Zheng Yongkang Chen Weirong +1 位作者 Dai Chaohua Wang Weibo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期869-876,共8页
A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of hu... A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of human randomized searching, and the human searching behaviors. The algorithm's performance is studied using a challenging set of typically complex functions with comparison of differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms, and the simulation results show that SFS is competitive to solve most parts of the benchmark problems and will become a promising candidate of search algorithms especially when the existing algorithms have some difficulties in solving certain problems. 展开更多
关键词 swarm intelligence stochastic focusing search real-parameter optimization human randomized searching particle swarm optimization.
下载PDF
Optimization for PID Controller of Cryogenic Ground Support Equipment Based on Cooperative Random Learning Particle Swarm Optimization 被引量:2
10
作者 李祥宝 季睿 杨煜普 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第2期140-146,共7页
Cryogenic ground support equipment (CGSE) is an important part of a famous particle physics experiment - AMS-02. In this paper a design method which optimizes PID parameters of CGSE control system via the particle swa... Cryogenic ground support equipment (CGSE) is an important part of a famous particle physics experiment - AMS-02. In this paper a design method which optimizes PID parameters of CGSE control system via the particle swarm optimization (PSO) algorithm is presented. Firstly, an improved version of the original PSO, cooperative random learning particle swarm optimization (CRPSO), is put forward to enhance the performance of the conventional PSO. Secondly, the way of finding PID coefficient will be studied by using this algorithm. Finally, the experimental results and practical works demonstrate that the CRPSO-PID controller achieves a good performance. 展开更多
关键词 particle swarm optimization (PSO) PID controller cryogenic ground support equipment (CGSE) cooperative random learning particle swarm optimization (CRPSO)
原文传递
RandWPSO-LSSVM optimization feedback method for large underground cavern and its engineering applications 被引量:2
11
作者 聂卫平 徐卫亚 刘兴宁 《Journal of Central South University》 SCIE EI CAS 2012年第8期2354-2364,共11页
According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flo... According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flow process of large underground cavern anchor parameters were established. By applying the optimization feedback method to actual project, the best anchor parameters of large surge shaft five-tunnel area underground cavern of the Nuozhadu hydropower station were obtained through optimization. The results show that the predicted effect of LSSVM prediction model obtained through RandWPSO optimization is good, reasonable and reliable. Combination of the best anchor parameters obtained is 114131312, that is, the locked anchor bar spacing is 1 m x 1 m, pre-stress is 100 kN, elevation 580.45-586.50 m section anchor bar diameter is 36.00 mm, length is 4.50 m, spacing is 1.5 m × 2.5 m; anchor bar diameter at the five-tunnel area side wall is 25.00 mm, length is 7.50 m, spacing is 1 m× 1.5 m, and the shotcrete thickness is 0.15 m. The feedback analyses show that the optimization feedback method of large underground cavern anchor parameters is reasonable and reliable, which has important guiding significance for ensuring the stability of large underground caverns and for saving project investment. 展开更多
关键词 random weight particle swarm optimization least squares support vector machine large undergrotmd cavern anchor oarameters optimization feedback rock-ooint safety factor
下载PDF
Adaptive transmit beamspace optimization design based on RD-log-FDA radar 被引量:2
12
作者 DING Zihang XIE Junwei LI Zhengjie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第1期91-96,共6页
Because of the range-angle dependency in random log frequency diverse array(RD-log-FDA) radar, a method for designing beamspace transformation matrix in angle and range based on the receive signal has been proposed.It... Because of the range-angle dependency in random log frequency diverse array(RD-log-FDA) radar, a method for designing beamspace transformation matrix in angle and range based on the receive signal has been proposed.It is demonstrated that the designed beamspace transformation matrix basically meets the requirements of beam gain.However, there are some problems in the transformation matrix designed, such as unstable beam gain and high sidelobe.Hence, we propose an optimization method by adjusting array element spacing and random number in frequency offset to get the optimum beam gain.Therefore, particle swarm optimization(PSO) is used to find the optimal solution.The beam gain comparison before and after the optimization is obtained by simulation, and the results show that the optimized array after beamspace preprocessing has more stable beam gain, lower sidelobe, and higher resolution in parameter estimation.In conclusion, the RD-log-FDA is capable of forming desired beam gain in angle and distance through beamspace preprocessing, and suppressing interference signals in other areas. 展开更多
关键词 BEAMSPACE random log frequency diverse array(RD-log-FDA) transformation matrix particle swarm optimization(PSO)
下载PDF
Structural Damage Identification System Suitable for Old Arch Bridge in Rural Regions: Random Forest Approach 被引量:1
13
作者 Yu Zhang Zhihua Xiong +2 位作者 Zhuoxi Liang Jiachen She Chicheng Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期447-469,共23页
A huge number of old arch bridges located in rural regions are at the peak of maintenance.The health monitoring technology of the long-span bridge is hardly applicable to the small-span bridge,owing to the absence of ... A huge number of old arch bridges located in rural regions are at the peak of maintenance.The health monitoring technology of the long-span bridge is hardly applicable to the small-span bridge,owing to the absence of technical resources and sufficient funds in rural regions.There is an urgent need for an economical,fast,and accurate damage identification solution.The authors proposed a damage identification system of an old arch bridge implemented with amachine learning algorithm,which took the vehicle-induced response as the excitation.A damage index was defined based on wavelet packet theory,and a machine learning sample database collecting the denoised response was constructed.Through comparing three machine learning algorithms:Back-Propagation Neural Network(BPNN),Support Vector Machine(SVM),and Random Forest(R.F.),the R.F.damage identification model were found to have a better recognition ability.Finally,the Particle Swarm Optimization(PSO)algorithm was used to optimize the number of subtrees and split features of the R.F.model.The PSO optimized R.F.model was capable of the identification of different damage levels of old arch bridges with sensitive damage index.The proposed framework is practical and promising for the old bridge’s structural damage identification in rural regions. 展开更多
关键词 Old arch bridge damage identification machine learning random forest particle swarm optimization
下载PDF
基于人工智能方法的隧道塌方风险预测研究 被引量:1
14
作者 刘志锋 陈名煜 +1 位作者 吴修梅 魏振华 《水力发电》 CAS 2024年第3期31-38,共8页
为了对隧道塌方风险展开研究,整理246起隧道塌方事故案例,通过建立塌方风险评估指标体系,基于人工智能预测方法,分别采用随机森林算法、径向基函数神经网络、BP神经网络模型、粒子群算法优化BP神经网络模型,对塌方风险进行预测。结果表... 为了对隧道塌方风险展开研究,整理246起隧道塌方事故案例,通过建立塌方风险评估指标体系,基于人工智能预测方法,分别采用随机森林算法、径向基函数神经网络、BP神经网络模型、粒子群算法优化BP神经网络模型,对塌方风险进行预测。结果表明,随机森林算法、径向基函数神经网络、BP神经网络模型、粒子群算法优化BP神经网络模型的塌方预测准确率分别为81.67%、83.33%、86.67%、93.33%,F_(1)值分别为0.645、0.642、0.5、0.833。粒子群算法优化BP神经网络模型预测准确率和F_(1)值均大幅提高,预测效果最好,大大减少了评估结果的主观性,为隧道塌方风险研究提供了新的研究思路。 展开更多
关键词 隧道工程 塌方 风险预测 随机森林算法 径向基函数神经网络 BP神经网络 粒子群算法
下载PDF
煤矿井下钻进速度影响因素及其智能预测方法研究
15
作者 戴剑博 王忠宾 +6 位作者 张琰 司垒 魏东 周文博 顾进恒 邹筱瑜 宋雨雨 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第7期209-221,共13页
在煤矿井下钻探领域,钻进速度(DR)是评估钻探作业最有效的指标之一,钻速预测是实现煤矿钻进智能化的前提条件,对于优化钻机钻进参数、降低作业成本、实现安全高效钻探具有重要意义。为此,提出煤矿井下钻进速度影响因素及其智能预测方法... 在煤矿井下钻探领域,钻进速度(DR)是评估钻探作业最有效的指标之一,钻速预测是实现煤矿钻进智能化的前提条件,对于优化钻机钻进参数、降低作业成本、实现安全高效钻探具有重要意义。为此,提出煤矿井下钻进速度影响因素及其智能预测方法研究,探索基于钻压、转速、扭矩以及钻进深度等少量钻机参数采用机器学习算法实现钻进速度精准预测。首先通过实验室微钻试验,深入分析煤岩力学性能、钻压、转速和钻进深度对扭矩、钻进速度影响规律。研究结果显示,在煤矿井下钻进过程中,随着钻进压力增大,钻进速度呈逐渐升高趋势,在较高的转速条件下钻进压力对钻进速度影响更加明显,转速增加有利于提高钻进速度,但转速对硬度较低的煤层钻进速度影响更为显著;然后,根据煤矿井下防冲钻孔现场数据,采用K–近邻(KNN)、支持向量回归(SVR)和随机森林回归(RFR)3种不同的机器学习算法建立钻进速度预测模型,并结合粒子群算法(PSO)对3种模型超参数进行优化,最后对比分析PSO–KNN,PSO–SVR和PSO–RFR三种钻进速度预测模型预测结果。研究结果表明,PSO–RFR模型准确性最好,决定系数R2高达0.963,均方误差MSE仅有29.742,而PSO–SVR模型鲁棒性最好,在对抗攻击后评价指标变化率最小。本文研究有助于实现煤矿井下钻进速度的精准预测,为煤矿井下智能钻进参数优化提供理论支撑。 展开更多
关键词 钻机参数 K–近邻 随机森林回归 支持向量回归 粒子群算法 钻进速度预测
下载PDF
气动调节阀粘滞故障检测与参数辨识方法研究
16
作者 向方娜 管桉琦 +2 位作者 林振浩 金志江 钱锦远 《流体机械》 CSCD 北大核心 2024年第8期23-30,共8页
为了研究气动调节阀的粘滞特性问题,以CHEN粘滞模型作为阀门粘滞特性问题的基础模型,提出一种阀门粘滞故障的检测与改进的参数辨识方法。通过搭建粘滞故障试验台,模拟实际情况中发生不同程度粘滞时的阀杆运动状态,揭示阀门粘滞发生的机... 为了研究气动调节阀的粘滞特性问题,以CHEN粘滞模型作为阀门粘滞特性问题的基础模型,提出一种阀门粘滞故障的检测与改进的参数辨识方法。通过搭建粘滞故障试验台,模拟实际情况中发生不同程度粘滞时的阀杆运动状态,揭示阀门粘滞发生的机理。使用随机森林算法对振荡源进行分类,实现对粘滞故障的检测。使用基于Hammerstein模型的粒子群优化算法求解粘滞参数最优解,提出粘滞双参数取值范围的确定方法,实现欠补偿、无补偿和过补偿3种状态下的粘滞参数辨识。结果表明:阀门粘滞程度与阀杆所受动静摩擦力有关;在不考虑外界因素的影响下,提出的粘滞检测方法对4种振荡源的分类准确率达到99.0268%;提出的改进的粘滞参数辨识方法对不同大小粘滞参数的辨识结果误差达到7%以内。研究成果为阀门粘滞故障的检测和参数辨识提供了理论方法,对粘滞模型的改进具有实际参考价值。 展开更多
关键词 气动调节阀 粘滞特性 粘滞检测 粘滞参数辨识 随机森林算法 粒子群优化算法
下载PDF
基于光谱分解和PSOBP组合模型的光谱重构研究
17
作者 胡春晖 张黎明 李鑫 《量子电子学报》 CAS CSCD 北大核心 2024年第1期47-56,共10页
针对R矩阵光谱重构法面临的问题,提出了一种基于相机响应特性的光谱分解方法,对分解出的同色异谱黑的反演建立粒子群优化BP神经网络模型(PSOBP)以实现网络训练权重的优化,并利用全局训练样本和局部训练样本的二次光谱重构方式进行了仿... 针对R矩阵光谱重构法面临的问题,提出了一种基于相机响应特性的光谱分解方法,对分解出的同色异谱黑的反演建立粒子群优化BP神经网络模型(PSOBP)以实现网络训练权重的优化,并利用全局训练样本和局部训练样本的二次光谱重构方式进行了仿真实验。结果表明,在D65光源下,利用所提出的方法, RGB相机观测下重构两种测试集均方误差平均值分别至少降低了1.71%和0.51%,色差最大值分别为3.5579和2.3776,满足人眼辨别颜色阈值要求;WorldView3观测下光谱重构精度均方误差在410~510、555~565、590~685、705~740 nm波段内不超过2%,适应度系数表示的可接受样本占比均为91.667%,色差最大值分别为1.6002和1.1177,其光谱重构精度以及色度精度较其他方法均有所提高,且6通道多光谱相机已能满足较高精度光谱重构的要求。 展开更多
关键词 遥感 光谱重构 同色异谱黑 粒子群优化 神经网络 齐次非线性扩展
下载PDF
基于RF-PSO的塔吊事故可能发生阶段预测与分析
18
作者 刘冬华 赵星 +1 位作者 赵江平 杨震 《工业安全与环保》 2024年第2期59-63,67,共6页
塔吊在高层建筑的施工现场较为常见,为了探索塔吊事故的影响因素,对塔吊事故可能发生阶段进行预测,建立了塔吊事故的人为因素分析分类系统(HFACS)模型框架,明确了塔吊事故的影响因素;利用卡方检验对事故致因进行特征选择及量化分析,提... 塔吊在高层建筑的施工现场较为常见,为了探索塔吊事故的影响因素,对塔吊事故可能发生阶段进行预测,建立了塔吊事故的人为因素分析分类系统(HFACS)模型框架,明确了塔吊事故的影响因素;利用卡方检验对事故致因进行特征选择及量化分析,提出了一种基于粒子群优化算法优化随机森林预测模型(RF-PSO)。结果表明:RF-PSO模型的预测是可靠的,训练后的RF-PSO模型可以预测塔吊事故可能发生的阶段,影响因素塔吊安装不符合设计要求、缺乏沟通和个人防护设备缺失发生的概率越大,塔吊事故分别在安拆阶段、吊装阶段和攀爬阶段发生事故的可能性越大。研究结果可为塔吊施工现场管理提供理论依据。 展开更多
关键词 塔吊事故 随机森林 粒子群优化算法 事故预测
下载PDF
基于改进PSO算法的移动机器人最优路径规划 被引量:3
19
作者 党博宇 李海燕 《组合机床与自动化加工技术》 北大核心 2024年第2期71-74,共4页
针对机器人全局移动路径上出现动态障碍物,影响其安全运动问题,提出了一种随机障碍物环境下的改进粒子群(PSO)最优路径规划方法。目的是保证机器人沿全局路径移动,并能躲避随机障碍物。通过Dijkstra算法规划全局路径,并利用改进的PSO算... 针对机器人全局移动路径上出现动态障碍物,影响其安全运动问题,提出了一种随机障碍物环境下的改进粒子群(PSO)最优路径规划方法。目的是保证机器人沿全局路径移动,并能躲避随机障碍物。通过Dijkstra算法规划全局路径,并利用改进的PSO算法进行全局路径优化,获得最短运动路径;进一步,利用动态窗口方法避开随机障碍物,并使机器人返回规划的全局路径,降低重新规划路径的计算成本;仿真对比分析和实验研究结果表明,所提出的路径规划方法能保障移动机器人避开随机障碍物并在规划的全局路径上安全运动。 展开更多
关键词 最优路径规划 改进粒子群算法 动态窗口法 随机障碍物
下载PDF
改进融合指标的新型盲解卷积算法在轴承故障诊断中的应用
20
作者 田甜 唐贵基 +1 位作者 田寅初 王晓龙 《噪声与振动控制》 CSCD 北大核心 2024年第1期162-167,共6页
为解决现有盲解卷积算法易受随机脉冲影响的问题,综合时域特征和频域特征,提出一个新的故障敏感指标,即包络谱峭度-包络基尼系数融合指标(Envelope Spectral Kurtosis-envelope Gini Index,ESKEG)。该指标对周期性脉冲更敏感,不易受随... 为解决现有盲解卷积算法易受随机脉冲影响的问题,综合时域特征和频域特征,提出一个新的故障敏感指标,即包络谱峭度-包络基尼系数融合指标(Envelope Spectral Kurtosis-envelope Gini Index,ESKEG)。该指标对周期性脉冲更敏感,不易受随机脉冲的影响。基于该指标,提出一个新的解卷积算法,即基于最大ESKEG的盲解卷积,并采用粒子群算法(Particle Swarm Optimization,PSO)求解滤波器系数。通过仿真振动信号和实验仿真信号进行验证,结果表明相比于其他盲解卷积算法,所提出的PSO-ESKEG算法在故障先验知识未知的情况下,能更有效避免受到随机脉冲信号的影响。 展开更多
关键词 故障诊断 盲解卷积 包络谱峭度-包络基尼系数 粒子群优化 随机脉冲
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部