Linear mixed model (LMM) approaches have been widely applied in many areas of research data analysis because they offer great flexibility for different data structures and linear model systems. In this study, emphasis...Linear mixed model (LMM) approaches have been widely applied in many areas of research data analysis because they offer great flexibility for different data structures and linear model systems. In this study, emphasis is placed on comparing the properties of two LMM approaches: restricted maximum likelihood (REML) and minimum norm quadratic unbiased estimation (MINQUE) with and without resampling techniques being included. Bias, testing power, Type I error, and computing time were compared between REML and MINQUE approaches with and without Jackknife technique based on 500 simulated data sets. Results showed that MINQUE and REML methods performed equally regarding bias, Type I error, and power. Jackknife-based MINQUE and REML greatly improved power compared to non-Jackknife based linear mixed model approaches. Results also showed that MINQUE is more time-saving compared to REML, especially with the use of resampling techniques and large data set analysis. Results from the actual cotton data analysis were in agreement with our simulated results. Therefore, Jackknife-based MINQUE approaches could be recommended to achieve desirable power with reduced time for a large data analysis and model simulations.展开更多
An innovative and uniform framework based on a combination of Gabor wavelets with principal component analysis (PCA) and multiple discriminant analysis (MDA) is presented in this paper. In this framework, features...An innovative and uniform framework based on a combination of Gabor wavelets with principal component analysis (PCA) and multiple discriminant analysis (MDA) is presented in this paper. In this framework, features are extracted from the optimal random image components using greedy approach. These feature vectors are then projected to subspaces for dimensionality reduction which is used for solving linear problems. The design of Gabor filters, PCA and MDA are crucial processes used for facial feature extraction. The FERET, ORL and YALE face databases are used to generate the results. Experiments show that optimal random image component selection (ORICS) plus MDA outperforms ORICS and subspace projection approach such as ORICS plus PCA. Our method achieves 96.25%, 99.44% and 100% recognition accuracy on the FERET, ORL and YALE databases for 30% training respectively. This is a considerably improved performance compared with other standard methodologies described in the literature.展开更多
文摘Linear mixed model (LMM) approaches have been widely applied in many areas of research data analysis because they offer great flexibility for different data structures and linear model systems. In this study, emphasis is placed on comparing the properties of two LMM approaches: restricted maximum likelihood (REML) and minimum norm quadratic unbiased estimation (MINQUE) with and without resampling techniques being included. Bias, testing power, Type I error, and computing time were compared between REML and MINQUE approaches with and without Jackknife technique based on 500 simulated data sets. Results showed that MINQUE and REML methods performed equally regarding bias, Type I error, and power. Jackknife-based MINQUE and REML greatly improved power compared to non-Jackknife based linear mixed model approaches. Results also showed that MINQUE is more time-saving compared to REML, especially with the use of resampling techniques and large data set analysis. Results from the actual cotton data analysis were in agreement with our simulated results. Therefore, Jackknife-based MINQUE approaches could be recommended to achieve desirable power with reduced time for a large data analysis and model simulations.
文摘An innovative and uniform framework based on a combination of Gabor wavelets with principal component analysis (PCA) and multiple discriminant analysis (MDA) is presented in this paper. In this framework, features are extracted from the optimal random image components using greedy approach. These feature vectors are then projected to subspaces for dimensionality reduction which is used for solving linear problems. The design of Gabor filters, PCA and MDA are crucial processes used for facial feature extraction. The FERET, ORL and YALE face databases are used to generate the results. Experiments show that optimal random image component selection (ORICS) plus MDA outperforms ORICS and subspace projection approach such as ORICS plus PCA. Our method achieves 96.25%, 99.44% and 100% recognition accuracy on the FERET, ORL and YALE databases for 30% training respectively. This is a considerably improved performance compared with other standard methodologies described in the literature.