期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparison of REML and MINQUE for Estimated Variance Components and Predicted Random Effects
1
作者 Nan Nan Johnie N. Jenkins +1 位作者 Jack C. McCarty Jixiang Wu 《Open Journal of Statistics》 2016年第5期814-823,共11页
Linear mixed model (LMM) approaches have been widely applied in many areas of research data analysis because they offer great flexibility for different data structures and linear model systems. In this study, emphasis... Linear mixed model (LMM) approaches have been widely applied in many areas of research data analysis because they offer great flexibility for different data structures and linear model systems. In this study, emphasis is placed on comparing the properties of two LMM approaches: restricted maximum likelihood (REML) and minimum norm quadratic unbiased estimation (MINQUE) with and without resampling techniques being included. Bias, testing power, Type I error, and computing time were compared between REML and MINQUE approaches with and without Jackknife technique based on 500 simulated data sets. Results showed that MINQUE and REML methods performed equally regarding bias, Type I error, and power. Jackknife-based MINQUE and REML greatly improved power compared to non-Jackknife based linear mixed model approaches. Results also showed that MINQUE is more time-saving compared to REML, especially with the use of resampling techniques and large data set analysis. Results from the actual cotton data analysis were in agreement with our simulated results. Therefore, Jackknife-based MINQUE approaches could be recommended to achieve desirable power with reduced time for a large data analysis and model simulations. 展开更多
关键词 Comparison of REML and MINQUE for Estimated Variance components and Predicted random Effects
下载PDF
Optimal Feature Extraction Using Greedy Approach for Random Image Components and Subspace Approach in Face Recognition 被引量:2
2
作者 Mathu Soothana S.Kumar Retna Swami Muneeswaran Karuppiah 《Journal of Computer Science & Technology》 SCIE EI CSCD 2013年第2期322-328,共7页
An innovative and uniform framework based on a combination of Gabor wavelets with principal component analysis (PCA) and multiple discriminant analysis (MDA) is presented in this paper. In this framework, features... An innovative and uniform framework based on a combination of Gabor wavelets with principal component analysis (PCA) and multiple discriminant analysis (MDA) is presented in this paper. In this framework, features are extracted from the optimal random image components using greedy approach. These feature vectors are then projected to subspaces for dimensionality reduction which is used for solving linear problems. The design of Gabor filters, PCA and MDA are crucial processes used for facial feature extraction. The FERET, ORL and YALE face databases are used to generate the results. Experiments show that optimal random image component selection (ORICS) plus MDA outperforms ORICS and subspace projection approach such as ORICS plus PCA. Our method achieves 96.25%, 99.44% and 100% recognition accuracy on the FERET, ORL and YALE databases for 30% training respectively. This is a considerably improved performance compared with other standard methodologies described in the literature. 展开更多
关键词 face recognition multiple discriminant analysis optimal random image component selection principal com- ponent analysis recognition accuracy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部