期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
EMPIRICAL LIKELIHOOD APPROACH FOR LONGITUDINAL DATA WITH MISSING VALUES AND TIME-DEPENDENT COVARIATES
1
作者 Yan Zhang Weiping Zhang Xiao Guo 《Annals of Applied Mathematics》 2016年第2期200-220,共21页
Missing data and time-dependent covariates often arise simultaneously in longitudinal studies,and directly applying classical approaches may result in a loss of efficiency and biased estimates.To deal with this proble... Missing data and time-dependent covariates often arise simultaneously in longitudinal studies,and directly applying classical approaches may result in a loss of efficiency and biased estimates.To deal with this problem,we propose weighted corrected estimating equations under the missing at random mechanism,followed by developing a shrinkage empirical likelihood estimation approach for the parameters of interest when time-dependent covariates are present.Such procedure improves efficiency over generalized estimation equations approach with working independent assumption,via combining the independent estimating equations and the extracted additional information from the estimating equations that are excluded by the independence assumption.The contribution from the remaining estimating equations is weighted according to the likelihood of each equation being a consistent estimating equation and the information it carries.We show that the estimators are asymptotically normally distributed and the empirical likelihood ratio statistic and its profile counterpart follow central chi-square distributions asymptotically when evaluated at the true parameter.The practical performance of our approach is demonstrated through numerical simulations and data analysis. 展开更多
关键词 empirical likelihood estimating equations longitudinal data missing at random
原文传递
非实验性药物流行病学研究数据缺失的预防、检查和处理
2
作者 CD Mack Z Su +1 位作者 AB Mendelsohn N Dreyer 《药物流行病学杂志》 CAS 2015年第1期14-22,共9页
与精心开展的随机化临床试验相比,非实验性研究中的缺失数据会对有效性形成更大的威胁。然而,非实验性真实世界研究可以更加准确地描述医疗干预措施在实际情境中对不同的患者群体的作用,从而补偿这些限制条件。如果研究者认识到缺失一... 与精心开展的随机化临床试验相比,非实验性研究中的缺失数据会对有效性形成更大的威胁。然而,非实验性真实世界研究可以更加准确地描述医疗干预措施在实际情境中对不同的患者群体的作用,从而补偿这些限制条件。如果研究者认识到缺失一定数量的数据(无论关于暴露、结局还是混杂因素)不可避免,就应该在研究开始时针对缺失数据制定计划,尽可能防止缺失数据,同时为处理重要变量的缺失数据制定规划。如不能获得所有患者的全部数据元素,就必须认真检查和处理缺失数据。可采用多重填补等统计技术填补空缺。这些方法都需要尽可能了解导致数据缺失的因素的相关假设及其与研究结果的关联。此文描述了预防缺失数据的策略和处理非实验性真实世界研究中缺失数据的分析方法,并加入了例证说明。 展开更多
关键词 数据缺失 缺失 非随机缺失 填补 观察性研究 非实验性研究 注册登记
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部