期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
L^2(R^d) Approximation Capability of Incremental Constructive Feedforward Neural Networks with Random Hidden Units
1
作者 Jin Ling LONG Zheng Xue LI Dong NAN 《Journal of Mathematical Research and Exposition》 CSCD 2010年第5期799-807,共9页
This paper studies approximation capability to L^2(Rd) functions of incremental constructive feedforward neural networks (FNN) with random hidden units. Two kinds of therelayered feedforward neural networks are co... This paper studies approximation capability to L^2(Rd) functions of incremental constructive feedforward neural networks (FNN) with random hidden units. Two kinds of therelayered feedforward neural networks are considered: radial basis function (RBF) neural networks and translation and dilation invariant (TDI) neural networks. In comparison with conventional methods that existence approach is mainly used in approximation theories for neural networks, we follow a constructive approach to prove that one may simply randomly choose parameters of hidden units and then adjust the weights between the hidden units and the output unit to make the neural network approximate any function in L2 (Rd) to any accuracy. Our result shows given any non-zero activation function g : R+ → R and g(||x||R^d) ∈ L^2(Rd) for RBF hidden units, or any non-zero activation function g(x) ∈ L^2(R^d) for TDI hidden units, the incremental network function fn with randomly generated hidden units converges to any target function in L2 (R^d) with probability one as the number of hidden units n → ∞, if one only properly adjusts the weights between the hidden units and output unit. 展开更多
关键词 APPROXIMATION incremental feedforward neural networks RBF neural networks TDI neural networks random hidden units.
下载PDF
随机权神经网络研究现状与展望 被引量:11
2
作者 乔俊飞 李凡军 杨翠丽 《智能系统学报》 CSCD 北大核心 2016年第6期758-767,共10页
神经网络随机学习克服了传统梯度类算法所固有的收敛速度慢及局部极小问题,最近已成为神经网络领域的研究热点之一。基于随机学习的思想,人们设计了不同结构的随机权神经网络模型。本文旨在回顾总结随机权神经网络的研究现状基础上,给... 神经网络随机学习克服了传统梯度类算法所固有的收敛速度慢及局部极小问题,最近已成为神经网络领域的研究热点之一。基于随机学习的思想,人们设计了不同结构的随机权神经网络模型。本文旨在回顾总结随机权神经网络的研究现状基础上,给出其发展趋势。首先,提出随机权神经网络简化模型,并基于简化模型给出神经网络随机学习算法;其次,回顾总结随机权神经网络研究现状,基于简化模型分析不同结构随机权神经网络的性能及随机权初始化方法;最后,给出随机权神经网络今后的发展趋势。 展开更多
关键词 随机权神经网络 前馈神经网络 递归神经网络 级联神经网络 随机学习算法
下载PDF
基于人类学习优化算法的改进进化随机网络及其故障诊断应用 被引量:1
3
作者 胡雪莲 沈乔勇 王灵 《工业控制计算机》 2021年第11期93-95,97,共4页
相比于传统的基于梯度的前馈神经网络,随机前馈神经网络具有更好的逼近能力和泛化学习能力,被广泛用于分类等问题中,然而其网络参数完全随机,在实际应用中存在性能不稳定、不可靠的隐患。为此,基于人类学习优化算法提出了一种改进的选... 相比于传统的基于梯度的前馈神经网络,随机前馈神经网络具有更好的逼近能力和泛化学习能力,被广泛用于分类等问题中,然而其网络参数完全随机,在实际应用中存在性能不稳定、不可靠的隐患。为此,基于人类学习优化算法提出了一种改进的选择性进化随机网络方法(Improved Selective Evolutionary Random Network,ISERN),协同进行特征选择和网络结构优化以提高网络性能,某远洋船舶海水淡化系统的故障诊断仿真结果表明ISERN方法与其他方法相比具有更好的故障诊断性能,体现出其有效性和优异性。 展开更多
关键词 人类学习优化算法 随机前馈神经网络 进化随机网络 故障诊断
下载PDF
结合GIS与FNN-SGD的雷波县泥石流易发性评价
4
作者 董艾嘉 邬春学 《软件导刊》 2022年第11期58-68,共11页
针对四川省凉山彝族自治州雷波县的泥石流易发性进行评价,首先考虑雷波县的自然地理和气候特点等因素,通过ArcGIS对获取的数据进行处理,并按照雷波县行政区域绘制相应的评价因子分类图,使用频率比法分析评价因子对泥石流灾害的敏感度;... 针对四川省凉山彝族自治州雷波县的泥石流易发性进行评价,首先考虑雷波县的自然地理和气候特点等因素,通过ArcGIS对获取的数据进行处理,并按照雷波县行政区域绘制相应的评价因子分类图,使用频率比法分析评价因子对泥石流灾害的敏感度;然后采用SMOTE算法增加少数类样本,使正样本与负样本达到均衡;最后提出FNNSGD模型应用于雷波县的泥石流易发性评价,并根据模型结果绘制泥石流易发性分布图,采用ROC曲线作为评估指标。实验结果表明,与前馈神经网络、逻辑回归、随机森林模型相比,FNN-SGD模型的准确率更高、稳定性更强,更适用于雷波县泥石流易发性评价。 展开更多
关键词 泥石流 GIS 前馈神经网络 逻辑回归 随机森林 FNN-SGD
下载PDF
针对大规模数据的随机权值前馈神经网络模型优化
5
作者 黄婷婷 冯锋 《计算机应用与软件》 北大核心 2023年第3期302-307,共6页
具有随机权值的前馈神经网络(FNNRWs)因其在大规模数据集处理中的潜能而受到广泛的关注。在具有随机权值的前馈神经网络的基础之上,将大规模数据分为大小相同的子集,每个子集派生出相应的子模型。根据激活函数计算出输入权值和偏置的最... 具有随机权值的前馈神经网络(FNNRWs)因其在大规模数据集处理中的潜能而受到广泛的关注。在具有随机权值的前馈神经网络的基础之上,将大规模数据分为大小相同的子集,每个子集派生出相应的子模型。根据激活函数计算出输入权值和偏置的最优取值范围,输入权值和偏置在该范围中随机产生,采用迭代的方式来评估输出权值。在UCI标准数据集上的实验结果表明,该算法对处理大规模数据集具有很好的应用效果。 展开更多
关键词 具有随机权值的前馈神经网络 大规模数据 神经网络 学习算法 权值优化
下载PDF
含有L_(21)范数正则化的在线顺序RVFL算法
6
作者 季江飞 郭久森 《智能计算机与应用》 2022年第10期150-153,共4页
单隐层前馈神经网络(SLFN)以其量级轻、参数量少、训练成本低等优点,目前被广泛地运用于函数逼近处理、模式识别和控制领域中。随机向量函数连接网络(RVFL)作为SLFN的一种,能够将输入层与输出层做直接相连,加强输出层与输入层的关联。... 单隐层前馈神经网络(SLFN)以其量级轻、参数量少、训练成本低等优点,目前被广泛地运用于函数逼近处理、模式识别和控制领域中。随机向量函数连接网络(RVFL)作为SLFN的一种,能够将输入层与输出层做直接相连,加强输出层与输入层的关联。然而目前的预测任务中,已经训练好的网络在面对批量数据会随时间不断变化的情况时,则容易显露出泛化能力不足问题。为了提升网络的泛化能力,并防止重复训练,本文提出了一种在线顺序的RVFL算法,使用L_(21)范数实现正则化。在UCI数据集上经过对多种相关参数的最佳选择后,与同类型的RVFL算法和LR_(21)-RVFL算法相比,本文提出的LR_(21)-OSRVFL算法在多种评价指标下均有更优表现。 展开更多
关键词 单隐层前馈神经网络 随机向量功能连接网络 在线顺序 L_(21)范数
下载PDF
随机权神经网络增量构造学习方法研究进展 被引量:2
7
作者 代伟 南静 《控制与决策》 EI CSCD 北大核心 2023年第8期2231-2242,共12页
随机权神经网络(random weight neural network,RWNN)在解决数据定性和定量分析方面具有强大的潜力,其最显著的特征是隐含层参数随机生成.这一特征使得RWNN相比于基于梯度下降优化微调节点参数的神经网络具有诸多优势,如结构简单、易于... 随机权神经网络(random weight neural network,RWNN)在解决数据定性和定量分析方面具有强大的潜力,其最显著的特征是隐含层参数随机生成.这一特征使得RWNN相比于基于梯度下降优化微调节点参数的神经网络具有诸多优势,如结构简单、易于实现和低人工干预等.RWNN的隐含层和输入层之间的参数是在一个固定区间内随机生成,而隐含层和输出层之间的输出权值则通过解析法进行求解.增量构造方法从一个小的初始网络开始,逐渐添加新的隐含层节点以提升模型品质,直到满足预期性能目标.基于此,重点从基础理论、增量构造学习方法和未来开放研究方向等方面切入,全面综述增量RWNN的研究进展.首先介绍RWNN的基本结构、理论和分析;进一步重点介绍RWNN在增量构造学习方法上的各种改进及应用;最后指出RWNN增量构造学习未来开放的研究方向. 展开更多
关键词 随机权神经网络 增量构造学习方法 前馈神经网络 随机方法 数据分析 无限逼近性
原文传递
X射线荧光光谱结合深度学习算法可视化检验食品包装纸 被引量:9
8
作者 郭琦 姜红 +2 位作者 杨金颉 吴克难 满吉 《激光与光电子学进展》 CSCD 北大核心 2022年第4期458-464,共7页
为了实现对案件现场常见食品包装纸的快速分类及认定,提出一种基于X射线荧光光谱(XRF)结合深度学习算法的食品包装纸可视化检验方法。首先,采用XRF检验44个不同来源的食品包装纸样本中的无机元素,并根据主要构成元素的含量,对其进行人... 为了实现对案件现场常见食品包装纸的快速分类及认定,提出一种基于X射线荧光光谱(XRF)结合深度学习算法的食品包装纸可视化检验方法。首先,采用XRF检验44个不同来源的食品包装纸样本中的无机元素,并根据主要构成元素的含量,对其进行人工分类和系统聚类分析。其次,分别使用主成分分析和t分布随机邻域嵌入两种降维算法处理数据以检验聚类效果,并实现数据分类可视化。最后,随机选取80%的样本作为训练集构建人工神经网络,并进行相关实验。实验结果表明,所提方法在测试集上的分类正确率为88.9%,可以为未来公安业务实际应用提供参考。 展开更多
关键词 X射线光学 X射线荧光光谱 系统聚类 主成分分析 t分布随机邻域嵌入 多层前馈神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部