期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Random failure mechanism method for assessment of working platform bearing capacity with a linear trend in undrained shear strength 被引量:1
1
作者 Marcin Chwaa Marek Kawa 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1513-1530,共18页
A bearing capacity evaluation for the surface strip foundation on a working platform modelled on a twolayered substrate is considered in the study.The upper layer is assumed as man-made and wellcontrolled and thus non... A bearing capacity evaluation for the surface strip foundation on a working platform modelled on a twolayered substrate is considered in the study.The upper layer is assumed as man-made and wellcontrolled and thus non-variable.The lower layer modelling natural cohesive soil is subjected to spatial variability of undrained shear strength.The random failure mechanism method(RFMM)is used to evaluate the bearing capacity.This approach employs a kinematic assessment of the critical load and incorporates the averaging of three-dimensional(3 D)random field along dissipation surfaces that result from the failure mechanism geometry.A novel version of the approach considering an additional linear trend of undrained shear strength in the spatially variable layer is proposed.The high efficiency of the RFMM algorithm is preserved.The influences of foundation length,trend slope in the spatially variable layer,fluctuation scales,and thickness of the homogenous sand layer on the resulting bearing capacity evaluations are analysed.Moreover,for selected cases,verification of the RFMM based assessment obtained using random finite difference method(RFDM)based on 3 D analysis is provided.Two types of analyses are performed using RFDM based on associated and non-associated flow rules.For associated flow rule which corresponds to RFMM,the RFMM is conservative and efficient and thus it seems preferable.However,if RFDM employs non-associated flow rule(much lower dilation angle for sand layer),the efficient RFMM is no longer conservative.For this situation,a combined approach that improves the efficiency of the numerical method is suggested. 展开更多
关键词 Two-layered soil random bearing capacity Fluctuation scale Kinematical approach Upper bound random finite difference method(RFDM) Working platform
下载PDF
Probabilistic assessment of slope failure considering anisotropic spatial variability of soil properties 被引量:1
2
作者 Longlong Chen Wengang Zhang +3 位作者 Fuyong Chen Dongming Gu Lin Wang Zhenyu Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第3期1-21,共21页
Anisotropic spatial variability of soil properties is frequently encountered in geotechnical engineering practice due to the complex depositional process.To quantitatively evaluate the response of slope failure relate... Anisotropic spatial variability of soil properties is frequently encountered in geotechnical engineering practice due to the complex depositional process.To quantitatively evaluate the response of slope failure related to anisotropic spatial variability of soil properties and reveal the underlying influence of anisotropic spatial variability of soil properties on the slope reliability,this study integrates the random finite difference method(RFDM)into a probabilistic assessment framework and adopts general spatial variability and a cohesive-frictional soil slope example for illustration.A parametric analysis is carried out to investigate the influence of general anisotropic spatial variability of soil properties on slope failure probability and failure characteristics.The results show that the directional angles of scales of fluctuation of general anisotropic spatial variability significantly affect the slope failure probability.The dominant failure mode is the intermediate type in most cases of general anisotropic spatial variability,which is distinguished from the shallow failure mode occurring in the homogenous state.Overestimation of cross-correlation between c and u(qc;u),scales of fluctuation(dmax and dmin)in general anisotropic spatially variable soils significantly influences the average slip mass volumes of deep and multi-slip failure mode.Compared with transverse anisotropic spatial variability,general anisotropic spatial variability significantly ampli-fies the effects of qc;u,dmax and dmin on slope reliability. 展开更多
关键词 random finite difference method Reliability Assessment Slope failure Anisotropic spatial variability Monte Carlo simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部