In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections...In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective.展开更多
The finite set statistics provides a mathematically rig- orous single target Bayesian filter (STBF) for tracking a target that generates multiple measurements in a cluttered environment. However, the target maneuver...The finite set statistics provides a mathematically rig- orous single target Bayesian filter (STBF) for tracking a target that generates multiple measurements in a cluttered environment. However, the target maneuvers may lead to the degraded track- ing performance and even track loss when using the STBF. The multiple-model technique has been generally considered as the mainstream approach to maneuvering the target tracking. Moti- vated by the above observations, we propose the multiple-model extension of the original STBF, called MM-STBF, to accommodate the possible target maneuvering behavior. Since the derived MM- STBF involve multiple integrals with no closed form in general, a sequential Monte Carlo implementation (for generic models) and a Gaussian mixture implementation (for linear Gaussian models) are presented. Simulation results show that the proposed MM-STBF outperforms the STBF in terms of root mean squared errors of dynamic state estimates.展开更多
In this study,we provide an overview of recent advances in multisensor multitarget tracking based on the random finite set(RFS)approach.The fusion that plays a fundamental role in multisensor filtering is classified i...In this study,we provide an overview of recent advances in multisensor multitarget tracking based on the random finite set(RFS)approach.The fusion that plays a fundamental role in multisensor filtering is classified into data-level multitarget measurement fusion and estimate-level multitarget density fusion,which share and fuse local measurements and posterior densities between sensors,respectively.Important properties of each fusion rule including the optimality and sub-optimality are presented.In particulax,two robust multitarget density-averaging approaches,arithmetic-and geometric-average fusion,are addressed in detail for various RFSs.Relevant research topics and remaining challenges are highlighted.展开更多
We demonstrate a heuristic approach for optimizing the posterior density of the data association tracking algorithm via the random finite set(RFS)theory.Specifically,we propose an adjusted version of the joint probabi...We demonstrate a heuristic approach for optimizing the posterior density of the data association tracking algorithm via the random finite set(RFS)theory.Specifically,we propose an adjusted version of the joint probabilistic data association(JPDA)filter,known as the nearest-neighbor set JPDA(NNSJPDA).The target labels in all possible data association events are switched using a novel nearest-neighbor method based on the Kullback-Leibler divergence,with the goal of improving the accuracy of the marginalization.Next,the distribution of the target-label vector is considered.The transition matrix of the target-label vector can be obtained after the switching of the posterior density.This transition matrix varies with time,causing the propagation of the distribution of the target-label vector to follow a non-homogeneous Markov chain.We show that the chain is inherently doubly stochastic and deduce corresponding theorems.Through examples and simulations,the effectiveness of NNSJPDA is verified.The results can be easily generalized to other data association approaches under the same RFS framework.展开更多
精准的电力负荷预测有利于保障电力系统的安全、经济运行。针对现行预测算法存在的预测准确度低、模型耗时长等问题,提出一种基于随机森林(random forest,RF)算法和粗糙集理论(rough set theory,RST)的改进型深度学习(deeplearning, DL...精准的电力负荷预测有利于保障电力系统的安全、经济运行。针对现行预测算法存在的预测准确度低、模型耗时长等问题,提出一种基于随机森林(random forest,RF)算法和粗糙集理论(rough set theory,RST)的改进型深度学习(deeplearning, DL)短期负荷预测模型(RF-DL-RST)。该模型首先基于历史数据,利用随机森林算法提取影响负荷预测的关键特征量;然后将关键特征量和历史负荷值作为深度神经网络的输入、输出项进行训练,并通过粗糙集理论修正预测结果。最后,通过算例进行仿真验证,结果表明,该模型的预测准确度比单一的深度学习模型及不进行预测修正的模型更高。展开更多
基金Project(61101186)supported by the National Natural Science Foundation of China
文摘In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective.
基金supported by the National Natural Science Foundation of China (61101181)
文摘The finite set statistics provides a mathematically rig- orous single target Bayesian filter (STBF) for tracking a target that generates multiple measurements in a cluttered environment. However, the target maneuvers may lead to the degraded track- ing performance and even track loss when using the STBF. The multiple-model technique has been generally considered as the mainstream approach to maneuvering the target tracking. Moti- vated by the above observations, we propose the multiple-model extension of the original STBF, called MM-STBF, to accommodate the possible target maneuvering behavior. Since the derived MM- STBF involve multiple integrals with no closed form in general, a sequential Monte Carlo implementation (for generic models) and a Gaussian mixture implementation (for linear Gaussian models) are presented. Simulation results show that the proposed MM-STBF outperforms the STBF in terms of root mean squared errors of dynamic state estimates.
基金Project supported by the Key Laboratory Foundation of National Defence Technology,China(No.61424010306)the Joint Fund of Equipment Development and Aerospace Science and Technology,China(No.6141B0624050101)the National Natural Science Foundation of China(Nos.61901489 and 62071389)。
文摘In this study,we provide an overview of recent advances in multisensor multitarget tracking based on the random finite set(RFS)approach.The fusion that plays a fundamental role in multisensor filtering is classified into data-level multitarget measurement fusion and estimate-level multitarget density fusion,which share and fuse local measurements and posterior densities between sensors,respectively.Important properties of each fusion rule including the optimality and sub-optimality are presented.In particulax,two robust multitarget density-averaging approaches,arithmetic-and geometric-average fusion,are addressed in detail for various RFSs.Relevant research topics and remaining challenges are highlighted.
基金Project supported by the National Key Research and Development Program of China(No.2017YFB1402102)the National Natural Science Foundation of China(Nos.61907028 and 11872036)+2 种基金the Natural Science Foundation of Shaanxi Province,China(Nos.2020JQ-423,2019JQ-574,and 2019ZDLSF07-01)the Fundamental Research Funds for the Central Universities,China(No.GK201903103)the China Postdoctoral Science Foundation(No.2018M640950)。
文摘We demonstrate a heuristic approach for optimizing the posterior density of the data association tracking algorithm via the random finite set(RFS)theory.Specifically,we propose an adjusted version of the joint probabilistic data association(JPDA)filter,known as the nearest-neighbor set JPDA(NNSJPDA).The target labels in all possible data association events are switched using a novel nearest-neighbor method based on the Kullback-Leibler divergence,with the goal of improving the accuracy of the marginalization.Next,the distribution of the target-label vector is considered.The transition matrix of the target-label vector can be obtained after the switching of the posterior density.This transition matrix varies with time,causing the propagation of the distribution of the target-label vector to follow a non-homogeneous Markov chain.We show that the chain is inherently doubly stochastic and deduce corresponding theorems.Through examples and simulations,the effectiveness of NNSJPDA is verified.The results can be easily generalized to other data association approaches under the same RFS framework.
文摘精准的电力负荷预测有利于保障电力系统的安全、经济运行。针对现行预测算法存在的预测准确度低、模型耗时长等问题,提出一种基于随机森林(random forest,RF)算法和粗糙集理论(rough set theory,RST)的改进型深度学习(deeplearning, DL)短期负荷预测模型(RF-DL-RST)。该模型首先基于历史数据,利用随机森林算法提取影响负荷预测的关键特征量;然后将关键特征量和历史负荷值作为深度神经网络的输入、输出项进行训练,并通过粗糙集理论修正预测结果。最后,通过算例进行仿真验证,结果表明,该模型的预测准确度比单一的深度学习模型及不进行预测修正的模型更高。