We consider a branching random walk with a random environment m time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environmen...We consider a branching random walk with a random environment m time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environment indexed by the time n. The envi- ronment is supposed to be independent and identically distributed. For A C R, let Zn(A) be the number of particles of generation n located in A. We show central limit theorems for the counting measure Zn (-) with appropriate normalization.展开更多
We consider a random walk on Z in random environment with possible jumps {-L,…, -1, 1}, in the case that the environment {ωi : i ∈ Z} are i.i.d.. We establish the renewal theorem for the Markov chain of "the envi...We consider a random walk on Z in random environment with possible jumps {-L,…, -1, 1}, in the case that the environment {ωi : i ∈ Z} are i.i.d.. We establish the renewal theorem for the Markov chain of "the environment viewed from the particle" in both annealed probability and quenched probability, which generalize partially the results of Kesten (1977) and Lalley (1986) for the nearest random walk in random environment on Z, respectively. Our method is based on (L, 1)-RWRE formulated in Hong and Wang the intrinsic branching structure within the (2013).展开更多
Consider a branching random walk, where the underlying branching mechanism is governed by a Galton-Watson process and the moving law of particles by a discrete random variable on the integer lattice Z. Denote by Zn(z...Consider a branching random walk, where the underlying branching mechanism is governed by a Galton-Watson process and the moving law of particles by a discrete random variable on the integer lattice Z. Denote by Zn(z) the number of particles in the n-th generation in the model for each z ∈ Z. We derive the exact convergence rate in the local limit theorem for Zn(z) assuming a condition like "EN(logN)1+λ 〈 ∞" for the offspring distribution and a finite moment condition on the motion law. This complements the known results for the strongly non-lattice branching random walk on the real line and for the simple symmetric branching random walk on the integer lattice.展开更多
Let (Xn)n∈EN be a sequence of arbitrary continuous random variables, by the notion of relative entropy hμ^μ(w) as a measure of dissimilarity between probability measure # and reference measure μ, the explicit,...Let (Xn)n∈EN be a sequence of arbitrary continuous random variables, by the notion of relative entropy hμ^μ(w) as a measure of dissimilarity between probability measure # and reference measure μ, the explicit, general bounds for the partial sums of arbitrary continuous random variables under suitable conditions are developed. The argument uses the known and elementary lcmma of convergence for likelihood ratio.展开更多
We are interested in the convergence rates of the submartingale Wn=Z_(n)/Π_(n)to its limit W,where(Π_(n))is the usually used norming sequence and(Z_(n))is a supercritical branching process with immigration(Y_(n))in ...We are interested in the convergence rates of the submartingale Wn=Z_(n)/Π_(n)to its limit W,where(Π_(n))is the usually used norming sequence and(Z_(n))is a supercritical branching process with immigration(Y_(n))in a stationary and ergodic environmentξ.Under suitable conditions,we establish the following central limit theorems and results about the rates of convergence in probability or in law:(i)W-W_(n) with suitable normalization converges to the normal law N(0,1),and similar results also hold for W_(n+k)-W_(n) for each fixed k∈N^(*);(ii)for a branching process with immigration in a finite state random environment,if W_(1) has a finite exponential moment,then so does W,and the decay rate of P(|W-W_(n)|>ε)is supergeometric;(iii)there are normalizing constants an(ξ)(that we calculate explicitly)such that a_(n)(ξ)(W-W_(n))converges in law to a mixture of the Gaussian law.展开更多
Let Sigma (infinity)(n=1) X-n be a series of independent random variables with at least one non-degenerate X-n, and let F-n be the distribution function of its partial sums S-n = Sigma (n)(k=1) X-k. Motivated by Hilde...Let Sigma (infinity)(n=1) X-n be a series of independent random variables with at least one non-degenerate X-n, and let F-n be the distribution function of its partial sums S-n = Sigma (n)(k=1) X-k. Motivated by Hildebrand's work in [1], the authors investigate the a.s. convergence of Sigma (infinity)(n=1) X-n under a hypothesis that Sigma (infinity)(n=1) rho (X-n, c(n)) = infinity whener Sigma (infinity)(n=1) c(n) diverges, where the notation rho (X,c) denotes the Levy distance between the random variable X and the constant c. The principal result of this paper shows that the hypothesis is the condition under which the convergence of F-n(x(0)) with the limit value 0 < L-0 < 1, together with the essential convergence of Sigma (infinity)(n=1) X-n, is both sufficient and necessary in order for the series Sigma (infinity)(n=1) X-n to a.s. coverage. Moreover, if the essential convergence of Sigma (infinity)(n=1) X-n is strengthened to limsup(n=infinity) P(\S-n\ < K) = 1 for some K > 0, the hypothesis is already equivalent to the a.s. convergence of Sigma (infinity)(n=1) X-n. Here they have not only founded a very general limit theorem, but improved the related result in Hildebrand([1]) as well.展开更多
We consider a discrete time Storage Process Xn with a simple random walk input Sn and a random release rule given by a family {Ux, x ≥ 0} of random variables whose probability laws {Ux, x ≥ 0} form a convolution sem...We consider a discrete time Storage Process Xn with a simple random walk input Sn and a random release rule given by a family {Ux, x ≥ 0} of random variables whose probability laws {Ux, x ≥ 0} form a convolution semigroup of measures, that is, μx × μy = μx + y The process Xn obeys the equation: X0 = 0, U0 = 0, Xn = Sn - USn, n ≥ 1. Under mild assumptions, we prove that the processes and are simple random walks and derive a SLLN and a CLT for each of them.展开更多
In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small per...In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small perturbation. Using this result, we can describe the stability of the non-autonomous dynamic systems.展开更多
We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotatio...We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotational asymmetry of the quantum state, the ratio of Os to ls varies with the measurement bases. The experimental partners can then use their measurement outcomes to generate the biased random bit string. The bias of their bit string can be adjusted by altering their choices of measurement bases. When this protocol is implemented in a device-independent way, we show that the bias of the bit string can still be ensured under the collective attack.展开更多
Let {Xn,n ≥ 1} be a sequence of arbitrary continuous random variables,we introduce the notion of limit asymptotic logarithm likelihood ratio r(ω),as a measure of dissimilarity between probability measure P and ref...Let {Xn,n ≥ 1} be a sequence of arbitrary continuous random variables,we introduce the notion of limit asymptotic logarithm likelihood ratio r(ω),as a measure of dissimilarity between probability measure P and reference measure Q.We get some strong deviation theorems for the partial sums of arbitrary continuous random variables under Chung-Teicher's type conditions[6-7].展开更多
The Brouwer fixed-point theorem in topology states that for any continuous mapping <em>f</em> on a compact convex set into itself admits a fixed point, <em>i.e.</em>, a point <em>x</em...The Brouwer fixed-point theorem in topology states that for any continuous mapping <em>f</em> on a compact convex set into itself admits a fixed point, <em>i.e.</em>, a point <em>x</em><sub>0</sub> such that<em> f</em>(<em>x</em><sub>0</sub>) = <em>x</em><sub>0</sub>. Under suitable conditions, this fixed point corresponds to the throat of a traversable wormhole, <em>i.e.</em>, <em>b</em>(<em>r</em><sub>0</sub>) = <em>r</em><sub>0</sub> for the shape function <em>b</em> = <em>b</em>(<em>r</em>). The possible existence of wormholes can therefore be deduced from purely mathematical considerations without going beyond the existing physical requirements.展开更多
Let(Zn)be a supercritical branching process with immigration in an independent and identically distributed random environment.Under necessary moment conditions,we show the exact convergence rate in the central limit t...Let(Zn)be a supercritical branching process with immigration in an independent and identically distributed random environment.Under necessary moment conditions,we show the exact convergence rate in the central limit theorem on log Zn and establish the corresponding local limit theorem by using the moments of the natural submartingale and the convergence rates of its logarithm.By similar approach and with the help of a change of measure,we also present the so-called integrolocal theorem and integral large deviation theorem to characterize the precise asymptotics of the upper large deviations.展开更多
基金partially supported by the National Natural Science Foundation of China(NSFC,11101039,11171044,11271045)a cooperation program between NSFC and CNRS of France(11311130103)+1 种基金the Fundamental Research Funds for the Central UniversitiesHunan Provincial Natural Science Foundation of China(11JJ2001)
文摘We consider a branching random walk with a random environment m time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environment indexed by the time n. The envi- ronment is supposed to be independent and identically distributed. For A C R, let Zn(A) be the number of particles of generation n located in A. We show central limit theorems for the counting measure Zn (-) with appropriate normalization.
文摘We consider a random walk on Z in random environment with possible jumps {-L,…, -1, 1}, in the case that the environment {ωi : i ∈ Z} are i.i.d.. We establish the renewal theorem for the Markov chain of "the environment viewed from the particle" in both annealed probability and quenched probability, which generalize partially the results of Kesten (1977) and Lalley (1986) for the nearest random walk in random environment on Z, respectively. Our method is based on (L, 1)-RWRE formulated in Hong and Wang the intrinsic branching structure within the (2013).
基金Supported by the National Natural Science Foundation of China (10871200)
文摘In this article, we obtain the central limit theorem and the law of the iterated logarithm for Galton-Watson processes in i.i.d, random environments.
文摘Consider a branching random walk, where the underlying branching mechanism is governed by a Galton-Watson process and the moving law of particles by a discrete random variable on the integer lattice Z. Denote by Zn(z) the number of particles in the n-th generation in the model for each z ∈ Z. We derive the exact convergence rate in the local limit theorem for Zn(z) assuming a condition like "EN(logN)1+λ 〈 ∞" for the offspring distribution and a finite moment condition on the motion law. This complements the known results for the strongly non-lattice branching random walk on the real line and for the simple symmetric branching random walk on the integer lattice.
基金Supported by the NNSF of China(10571076) Anhui High Education Research Grant( 2006Kj246B).
文摘Let (Xn)n∈EN be a sequence of arbitrary continuous random variables, by the notion of relative entropy hμ^μ(w) as a measure of dissimilarity between probability measure # and reference measure μ, the explicit, general bounds for the partial sums of arbitrary continuous random variables under suitable conditions are developed. The argument uses the known and elementary lcmma of convergence for likelihood ratio.
基金supported by the National Natural Science Foundation of China(11571052,11731012)the Hunan Provincial Natural Science Foundation of China(2018JJ2417)the Open Fund of Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering(2018MMAEZD02)。
文摘We are interested in the convergence rates of the submartingale Wn=Z_(n)/Π_(n)to its limit W,where(Π_(n))is the usually used norming sequence and(Z_(n))is a supercritical branching process with immigration(Y_(n))in a stationary and ergodic environmentξ.Under suitable conditions,we establish the following central limit theorems and results about the rates of convergence in probability or in law:(i)W-W_(n) with suitable normalization converges to the normal law N(0,1),and similar results also hold for W_(n+k)-W_(n) for each fixed k∈N^(*);(ii)for a branching process with immigration in a finite state random environment,if W_(1) has a finite exponential moment,then so does W,and the decay rate of P(|W-W_(n)|>ε)is supergeometric;(iii)there are normalizing constants an(ξ)(that we calculate explicitly)such that a_(n)(ξ)(W-W_(n))converges in law to a mixture of the Gaussian law.
文摘Let Sigma (infinity)(n=1) X-n be a series of independent random variables with at least one non-degenerate X-n, and let F-n be the distribution function of its partial sums S-n = Sigma (n)(k=1) X-k. Motivated by Hildebrand's work in [1], the authors investigate the a.s. convergence of Sigma (infinity)(n=1) X-n under a hypothesis that Sigma (infinity)(n=1) rho (X-n, c(n)) = infinity whener Sigma (infinity)(n=1) c(n) diverges, where the notation rho (X,c) denotes the Levy distance between the random variable X and the constant c. The principal result of this paper shows that the hypothesis is the condition under which the convergence of F-n(x(0)) with the limit value 0 < L-0 < 1, together with the essential convergence of Sigma (infinity)(n=1) X-n, is both sufficient and necessary in order for the series Sigma (infinity)(n=1) X-n to a.s. coverage. Moreover, if the essential convergence of Sigma (infinity)(n=1) X-n is strengthened to limsup(n=infinity) P(\S-n\ < K) = 1 for some K > 0, the hypothesis is already equivalent to the a.s. convergence of Sigma (infinity)(n=1) X-n. Here they have not only founded a very general limit theorem, but improved the related result in Hildebrand([1]) as well.
文摘We consider a discrete time Storage Process Xn with a simple random walk input Sn and a random release rule given by a family {Ux, x ≥ 0} of random variables whose probability laws {Ux, x ≥ 0} form a convolution semigroup of measures, that is, μx × μy = μx + y The process Xn obeys the equation: X0 = 0, U0 = 0, Xn = Sn - USn, n ≥ 1. Under mild assumptions, we prove that the processes and are simple random walks and derive a SLLN and a CLT for each of them.
基金Partially supported by the SFC(10531050,10225107)of Chinathe SRFDP(20040183030)the 985 program of Jilin University
文摘In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small perturbation. Using this result, we can describe the stability of the non-autonomous dynamic systems.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61378011,U1204616 and 11447143the Program for Science and Technology Innovation Talents in Universities of Henan Province under Grant No 2012HASTIT028the Program for Science and Technology Innovation Research Team in University of Henan Province under Grant No 13IRTSTHN020
文摘We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotational asymmetry of the quantum state, the ratio of Os to ls varies with the measurement bases. The experimental partners can then use their measurement outcomes to generate the biased random bit string. The bias of their bit string can be adjusted by altering their choices of measurement bases. When this protocol is implemented in a device-independent way, we show that the bias of the bit string can still be ensured under the collective attack.
基金Supported by Anhui High Education Research(2006Kj246B)
文摘Let {Xn,n ≥ 1} be a sequence of arbitrary continuous random variables,we introduce the notion of limit asymptotic logarithm likelihood ratio r(ω),as a measure of dissimilarity between probability measure P and reference measure Q.We get some strong deviation theorems for the partial sums of arbitrary continuous random variables under Chung-Teicher's type conditions[6-7].
文摘The Brouwer fixed-point theorem in topology states that for any continuous mapping <em>f</em> on a compact convex set into itself admits a fixed point, <em>i.e.</em>, a point <em>x</em><sub>0</sub> such that<em> f</em>(<em>x</em><sub>0</sub>) = <em>x</em><sub>0</sub>. Under suitable conditions, this fixed point corresponds to the throat of a traversable wormhole, <em>i.e.</em>, <em>b</em>(<em>r</em><sub>0</sub>) = <em>r</em><sub>0</sub> for the shape function <em>b</em> = <em>b</em>(<em>r</em>). The possible existence of wormholes can therefore be deduced from purely mathematical considerations without going beyond the existing physical requirements.
基金Supported by Shandong Provincial Natural Science Foundation(Grant No.ZR2021MA085)National Natural Science Foundation of China(Grant No.11971063)。
文摘Let(Zn)be a supercritical branching process with immigration in an independent and identically distributed random environment.Under necessary moment conditions,we show the exact convergence rate in the central limit theorem on log Zn and establish the corresponding local limit theorem by using the moments of the natural submartingale and the convergence rates of its logarithm.By similar approach and with the help of a change of measure,we also present the so-called integrolocal theorem and integral large deviation theorem to characterize the precise asymptotics of the upper large deviations.