期刊文献+
共找到697篇文章
< 1 2 35 >
每页显示 20 50 100
Vault predicting after implantable collamer lens implantation using random forest network based on different features in ultrasound biomicroscopy images 被引量:2
1
作者 Bin Fang Qiu-Jian Zhu +1 位作者 Hui Yang Li-Cheng Fan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第10期1561-1567,共7页
AIM:To analyze ultrasound biomicroscopy(UBM)images using random forest network to find new features to make predictions about vault after implantable collamer lens(ICL)implantation.METHODS:A total of 450 UBM images we... AIM:To analyze ultrasound biomicroscopy(UBM)images using random forest network to find new features to make predictions about vault after implantable collamer lens(ICL)implantation.METHODS:A total of 450 UBM images were collected from the Lixiang Eye Hospital to provide the patient’s preoperative parameters as well as the vault of the ICL after implantation.The vault was set as the prediction target,and the input elements were mainly ciliary sulcus shape parameters,which included 6 angular parameters,2 area parameters,and 2 parameters,distance between ciliary sulci,and anterior chamber height.A random forest regression model was applied to predict the vault,with the number of base estimators(n_estimators)of 2000,the maximum tree depth(max_depth)of 17,the number of tree features(max_features)of Auto,and the random state(random_state)of 40.0.RESULTS:Among the parameters selected in this study,the distance between ciliary sulci had a greater importance proportion,reaching 52%before parameter optimization is performed,and other features had less influence,with an importance proportion of about 5%.The importance of the distance between the ciliary sulci increased to 53% after parameter optimization,and the importance of angle 3 and area 1 increased to 5% and 8%respectively,while the importance of the other parameters remained unchanged,and the distance between the ciliary sulci was considered the most important feature.Other features,although they accounted for a relatively small proportion,also had an impact on the vault prediction.After parameter optimization,the best prediction results were obtained,with a predicted mean value of 763.688μm and an actual mean value of 776.9304μm.The R²was 0.4456 and the root mean square error was 201.5166.CONCLUSION:A study based on UBM images using random forest network can be performed for prediction of the vault after ICL implantation and can provide some reference for ICL size selection. 展开更多
关键词 random forest network ultrasound biomicroscopy images vault prediction implantable collamer lens
下载PDF
Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review 被引量:4
2
作者 Ernest Yeboah Boateng Joseph Otoo Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2020年第4期341-357,共17页
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (... In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement. 展开更多
关键词 Classification Algorithms NON-PARAMETRIC K-Nearest-Neighbor Neural networks random forest Support Vector Machines
下载PDF
BP neural networks and random forest models to detect damage by Dendrolimus punctatus Walker 被引量:6
3
作者 Zhanghua Xu Xuying Huang +4 位作者 Lu Lin Qianfeng Wang Jian Liu Kunyong Yu Chongcheng Chen 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期107-121,共15页
The construction of a pest detection algorithm is an important step to couple"ground-space"characteristics,which is also the basis for rapid and accurate monitoring and detection of pest damage.In four exper... The construction of a pest detection algorithm is an important step to couple"ground-space"characteristics,which is also the basis for rapid and accurate monitoring and detection of pest damage.In four experimental areas in Sanming City,Jiangle County,Sha County and Yanping District in Fujian Province,sample data on pest damage in 182 sets of Dendrolimus punctatus were collected.The data were randomly divided into a training set and testing set,and five duplicate tests and one eliminating-indicator test were done.Based on the characterization analysis of the host for D.punctatus damage,seven characteristic indicators of ground and remote sensing including leaf area index,standard error of leaf area index(SEL)of pine forest,normalized difference vegetation index(NDVI),wetness from tasseled cap transformation(WET),green band(B2),red band(B3),near-infrared band(B4)of remote sensing image are obtained to construct BP neural networks and random forest models of pest levels.The detection results of these two algorithms were comprehensively compared from the aspects of detection precision,kappa coefficient,receiver operating characteristic curve,and a paired t test.The results showed that the seven indicators all were responsive to pest damage,and NDVI was relatively weak;the average pest damage detection precision of six tests by BP neural networks was 77.29%,the kappa coefficient was 0.6869 and after the RF algorithm,the respective values were 79.30%and 0.7151,showing that the latter is more optimized,but there was no significant difference(p>0.05);the detection precision,kappa coefficient and AUC of the RF algorithm was higher than the BP neural networks for three pest levels(no damage,moderate damage and severe damage).The detection precision and AUC of BP neural networks were a little higher for mild damage,but the difference was not significant(p>0.05)except for the kappa coefficient for the no damage level(p<0.05).An"over-fitting"phenomenon tends to occur in BP neural networks,while RF method is more robust,providing a detection effect that is better than the BP neural networks.Thus,the application of the random forest algorithm for pest damage and multilevel dispersed variables is thus feasible and suggests that attention to the proportionality of sample data from various categories is needed when collecting data. 展开更多
关键词 BP neural networks Detection precision Kappa coefficient Pine moth random forest ROC curve
下载PDF
Machine Learning Models for Heterogenous Network Security Anomaly Detection
4
作者 Mercy Diligence Ogah Joe Essien +1 位作者 Martin Ogharandukun Monday Abdullahi 《Journal of Computer and Communications》 2024年第6期38-58,共21页
The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptio... The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptions. Conventional detection approaches face challenges in keeping up with the ever-changing strategies of cyber-attacks, resulting in heightened susceptibility and significant harm to network infrastructures. In order to tackle this urgent issue, this project focused on developing an effective anomaly detection system that utilizes Machine Learning technology. The suggested model utilizes contemporary machine learning algorithms and frameworks to autonomously detect deviations from typical network behaviour. It promptly identifies anomalous activities that may indicate security breaches or performance difficulties. The solution entails a multi-faceted approach encompassing data collection, preprocessing, feature engineering, model training, and evaluation. By utilizing machine learning methods, the model is trained on a wide range of datasets that include both regular and abnormal network traffic patterns. This training ensures that the model can adapt to numerous scenarios. The main priority is to ensure that the system is functional and efficient, with a particular emphasis on reducing false positives to avoid unwanted alerts. Additionally, efforts are directed on improving anomaly detection accuracy so that the model can consistently distinguish between potentially harmful and benign activity. This project aims to greatly strengthen network security by addressing emerging cyber threats and improving their resilience and reliability. 展开更多
关键词 Cyber-Security network Anomaly Detection Machine Learning random forest Decision Tree Gaussian Naive Bayes
下载PDF
基于车联网大数据的重型货车载重估计方法 被引量:1
5
作者 李彬 金昊宁 +1 位作者 宋瑞 靳廉洁 《北京理工大学学报》 EI CAS CSCD 北大核心 2024年第7期712-721,共10页
针对当前货车载重计算方法普遍存在的成本高昂及泛化性能不明确的问题,提出一种创新的重型货车载重估计方法,方法融合了车辆行驶动力学理论与机器学习算法,通过有监督学习,利用高速通行大数据对模型进行训练与验证.首先采用聚类分析,确... 针对当前货车载重计算方法普遍存在的成本高昂及泛化性能不明确的问题,提出一种创新的重型货车载重估计方法,方法融合了车辆行驶动力学理论与机器学习算法,通过有监督学习,利用高速通行大数据对模型进行训练与验证.首先采用聚类分析,确定车辆空、半、满载判断阈值,为后续的计算提供了重要依据.随后,利用随机森林算法训练分类模型,用以判断车辆在一段行驶过程中的基本载重情况.在此基础上,进一步在车辆行驶数据中筛选出稳定行驶的小片段,根据车辆系统动力学理论,对这些小片段车重进行计算.最后,根据载重状态的判断结果,对小片段车重结果进行筛选与计算,得到最终车辆载重计算结果.研究表明,在高速通行大数据的验证下,该方法对于空载及满载状态下趟次车重计算结果的整体平均绝对百分比误差(mean absolute percent error,MAPE)均可控制在10%以内,展现了较高的准确性.相比于现有技术,由于该方法无需安装额外传感器,对数据采集、存储、运算设备的要求也相对较低,因此在成本方面具有显著优势.在交通监管、物流运输、基于大数据的产品开发方面具有快速广泛推广的潜力. 展开更多
关键词 交通工程 货车载重估计 随机森林 车联网数据 贝叶斯优化
下载PDF
Comparing Machine Learning Algorithms for Improving the Maintenance of LTE Networks Based on Alarms Analysis 被引量:1
6
作者 Batchakui Bernabe Deussom Djomadji Eric Michel +1 位作者 Chana Anne Marie Mama Tsimi Serge Fabrice 《Journal of Computer and Communications》 2022年第12期125-137,共13页
Mobile network operators are facing many challenges to satisfy their subscribers in terms of quality of service and quality of experience provided. To achieve this goal, technological progress and scientific advances ... Mobile network operators are facing many challenges to satisfy their subscribers in terms of quality of service and quality of experience provided. To achieve this goal, technological progress and scientific advances offer good opportunities for efficiency in the management of faults occurring in a mobile network. Machine learning techniques allow systems to learn from past experiences and can predict, solutions to be applied to correct the root cause of a failure. This paper evaluates machine learning techniques and identifies the decision tree as a learning model that provides the most optimal error rate in predicting outages that may occur in a mobile network. Three machine learning techniques are presented in this study and compared with regard to accuracy. This study demonstrates that the appropriate machine learning technique improves the accuracy of the model. By using the decision tree as a machine learning model, it was possible to predict solutions to network failures, with an error rate less than 2%. In addition, the use of Machine Learning makes it possible to eliminate steps in the network failure processing chain;resulting in reduced service disruption time and improved the network availability which is a key network performance index. 展开更多
关键词 4G LTE Mobile network Machine Learning network Maintenance TROUBLESHOOTING Decision Tree random forest
下载PDF
医用氧化锆陶瓷磨削表面粗糙度的声发射智能预测
7
作者 李波 郭力 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第3期571-576,共6页
医用氧化锆陶瓷(Y-TZP)是较好的齿科修复体材料,为了得到较好的齿科修复体性能对于其制造精度特别是表面粗糙度的要求比较高,但其是硬脆难加工材料,为了提高医用氧化锆陶瓷磨削加工表面质量和加工效率,在对医用氧化锆陶瓷磨削过程中的... 医用氧化锆陶瓷(Y-TZP)是较好的齿科修复体材料,为了得到较好的齿科修复体性能对于其制造精度特别是表面粗糙度的要求比较高,但其是硬脆难加工材料,为了提高医用氧化锆陶瓷磨削加工表面质量和加工效率,在对医用氧化锆陶瓷磨削过程中的声发射信号分频段进行相关性分析的基础上,提取磨削声发射840~850kHz敏感频段信号中与磨削表面粗糙度强相关的12组特征值,构建了具有较高预测精度的随机森林神经网络,最终医用氧化锆陶瓷磨削表面粗糙度声发射预测最大相对误差低于8.37%,研究结果对医用氧化锆陶瓷磨削表面粗糙度在线智能监测有较大的参考价值。 展开更多
关键词 医用氧化锆陶瓷 磨削声发射 表面粗糙度预测 随机森林神经网络 相关性系数
下载PDF
基于多因子多模式集成的中长期径流预测模型
8
作者 陈娟 徐琦 +2 位作者 曹端祥 李国智 钟平安 《水科学进展》 EI CAS CSCD 北大核心 2024年第3期408-419,共12页
提高中长期径流预测精度对于水资源调度等具有重要意义和应用价值。基于国家气候中心的130项气候因子,采用皮尔逊相关系数、最大信息系数、方差增量指标筛选主要预测因子,建立基于DS(Dempster-Shafer)证据理论的多因子综合方法;采用随... 提高中长期径流预测精度对于水资源调度等具有重要意义和应用价值。基于国家气候中心的130项气候因子,采用皮尔逊相关系数、最大信息系数、方差增量指标筛选主要预测因子,建立基于DS(Dempster-Shafer)证据理论的多因子综合方法;采用随机森林、BP神经网络和贝叶斯网络等建立基于水文-气象因子遥相关的中长期径流预测模型,构建基于DS证据理论的预测结果集成模型。以三峡水库为对象开展实例研究,结果表明:引入遥相关因子能有效提高预测精度;基于DS证据理论的多因子综合方法能筛选出综合性更强、稳定性更优的因子,弥补单一筛选方法的不足;基于DS证据理论的多因子多模式集成方法在径流预测精度上优于单一方法单一模型,确定性系数提高到0.823,平均相对误差降低到23.2%。 展开更多
关键词 中长期径流预测 DS证据理论 随机森林 贝叶斯网络 BP神经网络 遥相关
下载PDF
小批量物料需求周预测的研究
9
作者 杜珍珍 周同 《杨凌职业技术学院学报》 2024年第2期5-12,39,共9页
在多品种小批量的物料生产中,企业一般事先无法知道物料的实际需求量,而准确的物料需求量预测对于提高企业生产效率具有重要的意义。首先建立了基于需求频数、需求数量、需求趋势和销售单价的物料重要性因子模型,从物料的重要性来筛选... 在多品种小批量的物料生产中,企业一般事先无法知道物料的实际需求量,而准确的物料需求量预测对于提高企业生产效率具有重要的意义。首先建立了基于需求频数、需求数量、需求趋势和销售单价的物料重要性因子模型,从物料的重要性来筛选企业需要重点关注的物料;随后引入基于需求频数、需求趋势和销售单价的随机森林回归模型和前馈神经网络模型来预测物料的需求量,并通过均方差等指标来评估模型。实验验证表明,该预测模型能为企业小批量物料需求提供一个有参考意义的解决方案。 展开更多
关键词 小批量物料 随机森林 神经网络 模型
下载PDF
一种随机森林增强的车载容迟网络路由算法
10
作者 吴家皋 芮琦 刘林峰 《小型微型计算机系统》 CSCD 北大核心 2024年第5期1188-1195,共8页
针对车载容迟网络(Vehicular Delay Tolerant Network,VDTN)中车辆节点高速移动造成的通信链路不稳定性问题,利用车辆节点的移动模式,提出了一种随机森林增强的VDTN路由算法.首先,引入与车辆节点运动相联系的属性并利用动态相遇奖励机... 针对车载容迟网络(Vehicular Delay Tolerant Network,VDTN)中车辆节点高速移动造成的通信链路不稳定性问题,利用车辆节点的移动模式,提出了一种随机森林增强的VDTN路由算法.首先,引入与车辆节点运动相联系的属性并利用动态相遇奖励机制对车辆节点进行分类,以此构建初始随机森林模型.接着,从决策树的分类性能和多样性两个方面优化模型,选择分类性能好、多样性高的决策树构造改进的随机森林模型,其中,决策树的分类性能和多样性分别根据每棵树分类错误率及相应的惩罚权重和由不合度量定义的决策树之间的相似度来衡量.最后,根据改进的随机森林模型提出新的VDTN路由算法.仿真实验证明,所提出的路由算法能显著提高消息的投递率,降低消息的投递时延,从而验证了其有效性. 展开更多
关键词 车载容迟网络 随机森林 路由算法 分类性能 多样性
下载PDF
柴油机Wiebe模型参数优化及燃烧性能预测
11
作者 张帆 马庆国 +3 位作者 王子玉 曹如楼 李超凡 裴毅强 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第5期473-481,共9页
基于一台单缸柴油机进行了发动机性能实验,通过结合单、双Wiebe燃烧模型和机器学习算法,提出了一种可预测的Wiebe燃烧模型,开展了不同边界条件下的燃烧参数和规律预测研究.首先,使用代数化Wiebe方程的线性拟合,根据线性拟合精度选取单、... 基于一台单缸柴油机进行了发动机性能实验,通过结合单、双Wiebe燃烧模型和机器学习算法,提出了一种可预测的Wiebe燃烧模型,开展了不同边界条件下的燃烧参数和规律预测研究.首先,使用代数化Wiebe方程的线性拟合,根据线性拟合精度选取单、双Wiebe模型.然后,使用列文伯格-马夸尔特(Levenberg-Marquardt,LM)算法拟合Wiebe方程得到相应的6个Wiebe参数,实现放热率Wiebe参数化.最后,基于该Wiebe燃烧参数,应用误差反向传播神经网络(back propagation neural network,BP-NN)和随机森林(random forest,RF)算法,开发了实用性更广泛的两种Wiebe燃烧预测模型,研究了不同边界条件下的燃烧规律.结果显示:代数Wiebe方程的线性拟合精度小于等于0.99000时放热率曲线更复杂,此时选用双Wiebe方程可得到高精度的Wiebe燃烧参数,反之选用单Wiebe方程即可;在1200 r/min和2200 r/min时选择双Wiebe方程对放热率进行拟合,拟合精度R^(2)均大于0.99000,误差平方和均小于0.01,通过Wiebe参数重新构建的放热率和实验放热率基本一致.基于LM算法的放热率拟合算法,可以很好地反映柴油机不同工况下的燃烧特征.对比两种不同的燃烧预测模型BP-NN和RF发现:BP-NN模型对一Wiebe形状因子m1和一Wiebe燃烧初始相位φ_(01)的预测精度更高,而RF算法对一Wiebe燃烧比例α和燃烧结束相位φ_(end)的预测精度更高,因此,针对不同燃烧参数选择不同预测模型可以有效提高Wiebe燃烧预测模型的精度. 展开更多
关键词 柴油机 Wiebe燃烧模型 列文伯格-马夸尔特算法 神经网络 随机森林算法
下载PDF
基于机器学习的“一带一路”投资国别风险预测研究 被引量:1
12
作者 向鹏成 高天 +1 位作者 段旭 李东 《工业技术经济》 CSSCI 北大核心 2024年第7期150-160,共11页
“一带一路”倡议提出十年间,中国对沿线国家的投资规模持续扩大。然而,企业在抓住机遇,进行“一带一路”沿线国家投资的同时,也需要重点关注“一带一路”投资国别风险。本文从政治、经济、社会和对华关系4个维度构建“一带一路”投资... “一带一路”倡议提出十年间,中国对沿线国家的投资规模持续扩大。然而,企业在抓住机遇,进行“一带一路”沿线国家投资的同时,也需要重点关注“一带一路”投资国别风险。本文从政治、经济、社会和对华关系4个维度构建“一带一路”投资国别风险预测指标体系;运用灰色关联分析计算样本国家的综合风险评价值;基于2012~2022年间“一带一路”沿线国家的数据,利用机器学习构建GA-BP神经网络、支持向量回归和随机森林3种预测模型;通过对比预测精度,确定最佳预测模型,利用2021年的指标数据,对2022年的投资国别风险进行预测。研究结果表明:(1)在“一带一路”投资国别风险的研究背景下,支持向量回归模型预测效果最优,证明机器学习模型能够有效应用于风险管理领域;(2)“一带一路”投资国别风险存在明显的地区差异,中东欧地区和东南亚地区投资国别风险普遍较低,而南亚地区投资国别风险普遍较高,但都存在特例。本文研究结果可为“走出去”企业在“一带一路”沿线国家的投资决策提供参考。 展开更多
关键词 “一带一路”投资 国别风险 机器学习 风险预测 GA-BP神经网络 支持向量回归 随机森林 地区差异
下载PDF
基于IHHT‑RF的配电网单相接地故障选线方法 被引量:1
13
作者 李泽文 黎文娇 +2 位作者 彭维馨 雷柳 梁流涛 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第1期171-182,共12页
小电流系统发生单相接地故障时故障特征易受高接地过渡电阻、小初相角等弱故障条件影响而导致选线准确率低。为此,提出一种基于改进希尔伯特黄变换—随机森林(improved Hilbert⁃Huang transform⁃random forest,IHHT⁃RF)的配电网单相接... 小电流系统发生单相接地故障时故障特征易受高接地过渡电阻、小初相角等弱故障条件影响而导致选线准确率低。为此,提出一种基于改进希尔伯特黄变换—随机森林(improved Hilbert⁃Huang transform⁃random forest,IHHT⁃RF)的配电网单相接地故障选线方法。首先,提取每条线路在故障发生时的电流暂态信号,通过IHHT提取纯净的暂态电气量,构造标准差、能量熵和幅值畸变度3类特征向量;然后,将特征向量输入RF分类器建立故障选线模型,把故障选线问题转化为二分类问题;最后,将测量数据输入RF分类器中得出分类结果,实现故障线路的自动识别。仿真结果表明,该选线方法综合利用暂态信号的幅值、频率和能量等特征信息,不受弱故障条件、馈线结构等因素的影响,能有效提高故障选线的准确率,具有较强的适应性和可靠性。 展开更多
关键词 配电网 改进希尔伯特黄变换 随机森林 故障选线
下载PDF
基于多粒度时间卷积网络的超短期风功率预测
14
作者 江国乾 徐向东 +3 位作者 白佳荣 何群 谢平 单伟 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期104-111,共8页
针对传统风功率预测方法通常基于固定时间粒进行研究,但该类方法往往忽略了其他时间粒度对风功率的影响的问题,提出一种基于多粒度时间卷积网络(MGTCN)的超短期风功率预测方法,使用时间卷积网络来挖掘多粒度视角下的风力机数据特征,并... 针对传统风功率预测方法通常基于固定时间粒进行研究,但该类方法往往忽略了其他时间粒度对风功率的影响的问题,提出一种基于多粒度时间卷积网络(MGTCN)的超短期风功率预测方法,使用时间卷积网络来挖掘多粒度视角下的风力机数据特征,并设计多粒度特征融合模块来增强模型的鲁棒性,提高风功率预测精度。首先,利用随机森林算法(RF)得到与输出功率相关性较强的部分特征数据;然后,对筛选后的特征数据进行多粒度划分,通过时间卷积网络(TCN)提取各个粒度的独立特征。最后,使用挤压激励网络(SENet)对不同粒度特征进行自适应加权融合,得到最终预测值。采用中国某风场数据进行算例分析,结果表明相较于其他方法,所提方法在24步预测任务和6步预测任务上取得了最佳的预测性能,具有较高的准确性和稳定性。在24步预测任务上归一化均方根误差、归一化平均绝对值误差和决定系数指标分别为0.152、0.108和0.7214,在6步预测任务上各指标分别为0.1027,0.0683和0.8717。 展开更多
关键词 风功率 预测 随机森林 多粒度计算 时间卷积网络 挤压激励网络
下载PDF
中国省域新质生产力空间网络结构动态演进及驱动力分析
15
作者 魏峰 范晓凯 《金融发展研究》 北大核心 2024年第9期14-24,共11页
为推动区域协调发展和新质生产力的均衡布局,本文基于K-means聚类分析和随机森林算法测算了2012—2022年中国30个省份的新质生产力发展水平,采用社会网络分析方法系统地研究了中国省域新质生产力空间网络的动态演进特征,并结合文本分析... 为推动区域协调发展和新质生产力的均衡布局,本文基于K-means聚类分析和随机森林算法测算了2012—2022年中国30个省份的新质生产力发展水平,采用社会网络分析方法系统地研究了中国省域新质生产力空间网络的动态演进特征,并结合文本分析和QAP回归模型探讨了省域新质生产力空间网络差异的驱动因素。研究发现:中国新质生产力整体上呈上升趋势,但区域间发展不均衡问题突出,呈现出东强西弱的特点;在空间分布上,省域新质生产力空间网络的复杂度逐年增加,网络关联和互动不断增强,其中东部沿海省份始终处于核心区域,中部省份逐渐进入核心区,而东北地区始终处于边缘区域。此外,QAP回归结果显示,加强技术进步、提高人力资本素质和有效利用数据要素可以显著提升省域新质生产力水平,推动区域经济的协调和可持续发展。 展开更多
关键词 新质生产力 随机森林算法 社会网络分析 文本分析方法 QAP
下载PDF
基于深度学习的小麦籽粒锌含量预测及安全利用分区
16
作者 李清彩 陈娟 +3 位作者 赵庆令 蔡图 韩文撑 褚琳琳 《农业环境科学学报》 CAS CSCD 北大核心 2024年第10期2248-2259,共12页
为实现对小麦籽粒Zn含量的精准预测及安全利用分区,以济宁南部小麦种植区为研究对象,采集并测定了小麦籽粒中Zn及根际土壤样品中SiO_(2)、Fe_(2)O_(3)、MgO、CaO、Na_(2)O、K_(2)O、OrgC、P、N、S、Zn和pH等12种理化指标的含量,系统研... 为实现对小麦籽粒Zn含量的精准预测及安全利用分区,以济宁南部小麦种植区为研究对象,采集并测定了小麦籽粒中Zn及根际土壤样品中SiO_(2)、Fe_(2)O_(3)、MgO、CaO、Na_(2)O、K_(2)O、OrgC、P、N、S、Zn和pH等12种理化指标的含量,系统研究了小麦籽粒中Zn含量及其根际土壤理化指标含量特征,利用多层感知机神经网络和随机森林模型对小麦籽粒Zn含量变化特征进行预测,选择最优模型预测出济宁南部区域小麦籽粒Zn含量,并结合GIS技术划分了贫锌、缺锌、足锌和富锌农田。结果表明:济宁南部区域小麦籽粒中Zn含量平均值(39.7 mg·kg^(-1))与富锌小麦籽粒推荐值基本持平,超出黄淮麦区小麦籽粒Zn平均含量1.32倍;经相关分析和聚类分析得出,小麦籽粒Zn与根际土壤理化指标之间相互作用、相互耦合,存在着较为复杂的非线性关系;多层感知机神经网络预测模型的R^(2)(0.999)、RMSE(0.194)和MAE(0.146)等评价指标均优于随机森林模型;根际土壤中P、pH、OrgC和N指标是影响多层感知机神经网络预测相对重要的特征变量;研究区以足锌农田和缺锌农田为主,面积占比分别为57.47%和33.97%,谨慎利用贫锌区和安全利用富锌区农田面积占比分别为6.05%和2.51%。通过深度学习与农业地质相结合,利用多层感知机神经网络实现了通过简单土壤理化指标精准预测小麦籽粒锌含量。 展开更多
关键词 深度学习 多层感知机神经网络 随机森林 小麦 安全利用
下载PDF
面向喷染车间的挥发性有机物质量浓度预测方法及应用研究 被引量:2
17
作者 彭来湖 张权 +1 位作者 李建强 李杨 《安全与环境学报》 CAS CSCD 北大核心 2024年第1期186-195,共10页
以喷染车间挥发性有机物为研究对象,对喷染车间挥发性有机物(Volatile Organic Compounds, VOCs)质量浓度预测方法进行研究。首先,使用随机森林(Random Forest, RF)算法对影响喷染车间挥发性有机物质量浓度的特征变量进行权重分析。同时... 以喷染车间挥发性有机物为研究对象,对喷染车间挥发性有机物(Volatile Organic Compounds, VOCs)质量浓度预测方法进行研究。首先,使用随机森林(Random Forest, RF)算法对影响喷染车间挥发性有机物质量浓度的特征变量进行权重分析。同时,构建基于长短期记忆神经网络(Long-Term and Short-Term Memory Neural Network, LSTM)的挥发性有机物质量浓度预测模型,并在此基础上引入麻雀搜索算法(Sparrow Search Algorithm, SSA)进行参数优化选择。最后,以浙江省杭州市某汽车喷染车间7月29日—10月28日的数据为样本,将温度、相对湿度、室内大气压、室外大气压作为模型输入变量,并与LSTM模型、随机森林-长短期记忆神经网络(Random Forest-Long Short-Term Memory neural network, RF-LSTM)模型、随机森林-反向传播神经网络(Random Forest-BP neural network, RF-BP)模型进行对比试验。结果显示,基于随机森林-麻雀搜索算法-长短期记忆神经网络(Random Forest-Sparrow Search Algorithm-Long Short-Term Memory neural network, RF-SSA-LSTM)模型的预测效果最佳,平均绝对误差、均方根误差和决定系数分别为2.812 2、3.457 4、0.988。同时,为验证RF-SSA-LSTM模型性能,通过不同时间步长实现对喷染车间VOCs质量浓度预测,结果显示预测误差较小,在可接受范围内。RF-SSA-LSTM预测模型提高了挥发性有机物质量浓度的预测精度,为减少挥发性有机物排放提供科学依据。 展开更多
关键词 安全卫生工程技术 挥发性有机物 随机森林 麻雀搜索算法 LSTM神经网络
下载PDF
基于随机森林的复杂室内混合WiFi-LiFi网络接入点选择研究
18
作者 张慧颖 马成宇 +2 位作者 梁士达 盛美春 李月月 《光学技术》 CAS CSCD 北大核心 2024年第5期567-573,共7页
针对复杂室内环境下混合LiFi-WiFi异构网络接入点选择困难的问题,提出一种基于随机森林模型的混合LiFi-WiFi网络接入点选择算法。所提出的网络接入点选择算法利用多个网络的信道特性,通过模拟不同的室内复杂环境,采集不同位置用户在不... 针对复杂室内环境下混合LiFi-WiFi异构网络接入点选择困难的问题,提出一种基于随机森林模型的混合LiFi-WiFi网络接入点选择算法。所提出的网络接入点选择算法利用多个网络的信道特性,通过模拟不同的室内复杂环境,采集不同位置用户在不同情况下的接收信号强度和信噪比等值,构建训练集,使模型能够适应各种复杂的室内环境。仿真结果表明,与传统网络选择算法相比,算法的平均可实现吞吐量提高了约82%,特别是在室内情况较为复杂时,可提高160%。在用户移动时,并且接入用户数量增加时,文章提出的算法可比其他算法切换次数显著减少20%。 展开更多
关键词 信息光学 混合网络 可见光通信(LiFi) 随机森林
下载PDF
广西暴雨集中度智能气候预测方法研究
19
作者 覃卫坚 何莉阳 蔡悦幸 《气象研究与应用》 2024年第3期12-20,共9页
利用1961—2023年广西79个气象观测站逐日降水和国家气候中心大气环流、海温指数资料,构建广西暴雨集中度计算方法,基于逐步回归方法、粒子群-神经网络、随机森林算法,建立暴雨集中度气候预测模型。结果表明,广西存在以桂林和柳州两市... 利用1961—2023年广西79个气象观测站逐日降水和国家气候中心大气环流、海温指数资料,构建广西暴雨集中度计算方法,基于逐步回归方法、粒子群-神经网络、随机森林算法,建立暴雨集中度气候预测模型。结果表明,广西存在以桂林和柳州两市北部为中心的桂东北地区、以“东兰、巴马、凤山”为中心的桂西山区和沿海地区三个暴雨集中度高值区,暴雨集中度异常大小基本反映发生洪涝和干旱灾害的严重程度。经过2020—2023年气候预测试验,粒子群-神经网络算法预测效果最好,其次为随机森林算法,第三是逐步回归方法。 展开更多
关键词 暴雨 集中度 集中期 粒子群-神经网络 随机森林算法
下载PDF
结合遗传算法的RF-DBN入侵检测方法
20
作者 任俊玲 诸于铭 《中国科技论文》 CAS 2024年第8期937-944,共8页
针对目前不平衡数据集少数类攻击样本识别率较低的问题,提出一种BorderlineSMOTE、随机森林和遗传算法(genetic algorithm,GA)-深度信念网络(deep belief network,DBN)相结合的入侵检测方法。首先采用BorderlineSMOTE对少数类样本进行... 针对目前不平衡数据集少数类攻击样本识别率较低的问题,提出一种BorderlineSMOTE、随机森林和遗传算法(genetic algorithm,GA)-深度信念网络(deep belief network,DBN)相结合的入侵检测方法。首先采用BorderlineSMOTE对少数类样本进行过采样,减少数据集的不平衡度;然后使用随机森林算法实现正异常数据分类,筛选出异常数据;最后采用经GA优化的DBN网络对异常数据进行进一步分类。使用网络安全数据集CICIDS2017进行验证,该方法的准确率达到了99.85%,而且少数类样本的识别精度也有明显提高。 展开更多
关键词 随机森林 遗传算法 BorderlineSMOTE 深度信念网络 数据不平衡 入侵检测
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部