期刊文献+
共找到293篇文章
< 1 2 15 >
每页显示 20 50 100
Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree,random forest and information value models 被引量:9
1
作者 CHEN Tao ZHU Li +3 位作者 NIU Rui-qing TRINDER C John PENG Ling LEI Tao 《Journal of Mountain Science》 SCIE CSCD 2020年第3期670-685,共16页
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de... This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR. 展开更多
关键词 MAPPING LANDSLIDE SUSCEPTIBILITY gradient BOOSTING decision tree random FOREST Information value model Three Gorges Reservoir
下载PDF
Linear and Nonlinear Trading Models with Gradient Boosted Random Forests and Application to Singapore Stock Market
2
作者 Qin Qin Qing-Guo Wang +1 位作者 Jin Li Shuzhi Sam Ge 《Journal of Intelligent Learning Systems and Applications》 2013年第1期1-10,共10页
This paper presents new trading models for the stock market and test whether they are able to consistently generate excess returns from the Singapore Exchange (SGX). Instead of conventional ways of modeling stock pric... This paper presents new trading models for the stock market and test whether they are able to consistently generate excess returns from the Singapore Exchange (SGX). Instead of conventional ways of modeling stock prices, we construct models which relate the market indicators to a trading decision directly. Furthermore, unlike a reversal trading system or a binary system of buy and sell, we allow three modes of trades, namely, buy, sell or stand by, and the stand-by case is important as it caters to the market conditions where a model does not produce a strong signal of buy or sell. Linear trading models are firstly developed with the scoring technique which weights higher on successful indicators, as well as with the Least Squares technique which tries to match the past perfect trades with its weights. The linear models are then made adaptive by using the forgetting factor to address market changes. Because stock markets could be highly nonlinear sometimes, the Random Forest is adopted as a nonlinear trading model, and improved with Gradient Boosting to form a new technique—Gradient Boosted Random Forest. All the models are trained and evaluated on nine stocks and one index, and statistical tests such as randomness, linear and nonlinear correlations are conducted on the data to check the statistical significance of the inputs and their relation with the output before a model is trained. Our empirical results show that the proposed trading methods are able to generate excess returns compared with the buy-and-hold strategy. 展开更多
关键词 Stock Modeling SCORING TECHNIQUE Least Square TECHNIQUE random FOREST gradient Boosted random FOREST
下载PDF
Human Action Recognition Based on Dense Trajectories Analysis and Random Forest 被引量:1
3
作者 Pin-Zhong Pan Chung-Lin Huang 《Journal of Electronic Science and Technology》 CAS CSCD 2016年第4期370-376,共7页
This paper presents a human action recognition method. It analyzes the spatio-temporal grids along the dense trajectories and generates the histogram of oriented gradients (HOG) and histogram of optical flow (HOF)... This paper presents a human action recognition method. It analyzes the spatio-temporal grids along the dense trajectories and generates the histogram of oriented gradients (HOG) and histogram of optical flow (HOF) to describe the appearance and motion of the human object. Then, HOG combined with HOF is converted to bag-of-words (BoWs) by the vocabulary tree. Finally, it applies random forest to recognize the type of human action. In the experiments, KTH database and URADL database are tested for the performance evaluation. Comparing with the other approaches, we show that our approach has a better performance for the action videos with high inter-class and low inter-class variabilities. 展开更多
关键词 Bag-of-words (BoWs) dense trajectories histogram of optical flow (HOF) histogram of oriented gradient (HOG) random forest vocabulary tree.
下载PDF
基于随机森林和XGBoost算法构建心脏骤停患者自主循环恢复后神经功能预后不良的风险预测模型 被引量:1
4
作者 桑珍珍 崔杰 +2 位作者 闫寒 王维峰 庞秀艳 《中国急救医学》 CAS CSCD 2024年第7期577-585,共9页
目的 利用机器学习算法构建预测心脏骤停(CA)患者自主循环恢复(ROSC)后神经功能预后不良的预测模型,探索结局相关因子。方法 回顾性收集2016年1月至2024年1月沧州市中心医院收治的CA行心肺复苏(CPR)后ROSC的患者481例为研究对象。收集... 目的 利用机器学习算法构建预测心脏骤停(CA)患者自主循环恢复(ROSC)后神经功能预后不良的预测模型,探索结局相关因子。方法 回顾性收集2016年1月至2024年1月沧州市中心医院收治的CA行心肺复苏(CPR)后ROSC的患者481例为研究对象。收集患者临床资料,根据患者转出重症监护病房(ICU)时的格拉斯哥-匹兹堡脑功能表现分级(CPC)评分,将其分为预后良好组(GNO,n=158)和预后不良组(PNO,n=323)。481例患者按7∶3随机分为训练集(n=338)和测试集(n=143),训练集用于构建模型,测试集用评价模型效能。利用极端梯度提升(XGBoost)和随机森林(RF)两种机器学习算法构建患者神经功能预后不良的预测模型,分别得出影响患者神经功能预后的变量,应用SHAP进行XGBoost模型可解释性分析。将XGBoost和RF算法得出的变量取交集,再将交集变量进行多因素Logistic回归分析,得到差异有统计学意义的变量,进而构建决策树模型。在训练集和测试集上利用受试者工作特征(ROC)曲线和曲线下面积(AUC)评估决策树模型的预测性能。结果 通过XGBoost模型得到与神经功能预后不良相关的变量15个,RF模型得到与神经功能预后不良相关的变量14个,两种模型取交集得到11个与神经功能预后不良相关的交集变量[视神经鞘直径(ONSD)变化率、神经元特异性烯醇化酶(NSE)、入ICU第3天ONSD(ONSD day3)、心脏骤停至心肺复苏(CA-CPR)时间、ROSC时间、急性生理学与慢性健康状况评价Ⅱ(APACHEⅡ)评分、血肌酐、白蛋白、住ICU时间、血乳酸及年龄]。将这11个交集变量进行多因素Logistic回归分析,结果显示,PNO组与GNO组ONSD变化率、NSE、ONSD day3、ROSC时间及年龄这5个变量差异有统计学意义(P<0.05)。用这5个重要变量构建决策树模型,得出3个与患者神经功能预后不良最相关的变量(NSE、ROSC时间及ONSD变化率),在训练集上的决策树模型预测CA行CPR后ROSC患者神经功能预后不良的AUC为0.857(95%CI 0.809~0.903,P<0.001),在测试集上的AUC为0.834 (95%CI 0.761~0.906,P<0.001)。结论 基于XGBoost和RF这2种机器学习方法构建的决策树模型能够更准确地评估CA患者ROSC后神经功能的不良预后,且评价指标可能简化为NSE、ROSC时间及ONSD变化率。 展开更多
关键词 心脏骤停 自主循环恢复 神经功能 预测模型 随机森林 极端梯度提升
下载PDF
基于优化快速搜索随机树算法的全局路径规划 被引量:2
5
作者 杨炜 谭亮 +2 位作者 孙雪 杜亚峰 周晓冰 《汽车技术》 CSCD 北大核心 2024年第3期31-36,共6页
为了改善传统快速搜索随机树(RRT)算法在全局路径规划中存在的平滑度差、具有潜在碰撞性等问题,提出了一种双重优化的RRT算法。在传统RRT算法基础上,引入自适应目标偏向策略以缩短采样时间,引入角度约束采样策略以适应车辆极限转角。得... 为了改善传统快速搜索随机树(RRT)算法在全局路径规划中存在的平滑度差、具有潜在碰撞性等问题,提出了一种双重优化的RRT算法。在传统RRT算法基础上,引入自适应目标偏向策略以缩短采样时间,引入角度约束采样策略以适应车辆极限转角。得到初始路径后,建立二项优化函数(即降低路径曲率和远离障碍物),并将其作为基点进行梯度下降二次优化,生成可供车辆行驶、平滑性良好且碰撞概率低的路径,并进行仿真验证。结果表明:优化RRT算法相比于传统RRT算法、RRT-Connect算法和RRT算法,平均曲率分别降低了38.1%、36.4%和24.7%,曲率均方差分别降低了38.4%、38.4%和27.2%。 展开更多
关键词 快速搜索随机树 全局路径规划 避障 梯度下降法
下载PDF
低覆盖草地叶面积指数遥感估算方法 被引量:1
6
作者 张云峰 任鸿瑞 《草业科学》 CAS CSCD 北大核心 2024年第3期588-598,共11页
有效估算低覆盖草地叶面积指数(LAI),对监测低覆盖草地生长状况、优化完善草地管理具有重要意义。以往针对草地叶面积指数的研究大多集中于中高覆盖度草地,对低覆盖草地的研究相对较少。利用谷歌地球引擎(GEE),基于Landsat-8卫星数据提... 有效估算低覆盖草地叶面积指数(LAI),对监测低覆盖草地生长状况、优化完善草地管理具有重要意义。以往针对草地叶面积指数的研究大多集中于中高覆盖度草地,对低覆盖草地的研究相对较少。利用谷歌地球引擎(GEE),基于Landsat-8卫星数据提取所需特征变量,通过特征变量与叶面积指数的相关性及其在模型中的重要性进行特征优选,确定模型最佳变量个数,以此构建机器学习模型,探寻适合在低覆盖区草地估算叶面积指数的方法。结果显示,基于相关性特征优选的梯度提升回归树模型(r-GBRT)在低覆盖草地估算叶面积指数的效果较好,测试集的R 2为0.686,均方根误差(RMSE)为0.101。结果表明,基于特征优选构建的机器学习模型在低覆盖条件下估算草地叶面积指数方面具有较好的应用价值。 展开更多
关键词 叶面积指数 低覆盖草地 机器学习 特征优选 随机森林 梯度提升回归树 遥感
下载PDF
基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价 被引量:5
7
作者 郭衍昊 窦杰 +3 位作者 向子林 马豪 董傲男 罗万祺 《地质科技通报》 CAS CSCD 北大核心 2024年第3期251-265,共15页
强震诱发的滑坡具有数量多、分布广、规模大等特点,严重威胁人民生命财产安全。滑坡易发性评价能够快速预测灾害空间分布,对于减轻震后灾害的危险性具有重要意义。在同震滑坡易发性评价研究中,如何选取滑坡负样本并通过耦合机器学习模... 强震诱发的滑坡具有数量多、分布广、规模大等特点,严重威胁人民生命财产安全。滑坡易发性评价能够快速预测灾害空间分布,对于减轻震后灾害的危险性具有重要意义。在同震滑坡易发性评价研究中,如何选取滑坡负样本并通过耦合机器学习模型提高评价精度的对比研究仍需进一步研究。以山区汶川地震诱发的滑坡为研究区,首先选取地形地貌、地质环境、地震参数等10个滑坡评价因子,分析滑坡空间分布规律;其次因子共线性分析检验数据冗余,接下来采用频率比法(FR)选取极低、低易发区滑坡负样本点的采样策略;最后采用基于决策树演化改进的梯度提升决策树(GBDT)、随机森林(RF)和耦合模型(FR-GBD与FR-RF),开展了基于机器学习的同震滑坡易发性区划并进行精度评价。研究结果表明:①滑坡空间分布受到多层级因子控制;②模型预测精度为:FR-RF(AUC=0.943)>FR-GBDT(AUC=0.926)>RF(AUC=0.901)>GBDT(AUC=0.856);③在低易发区选择滑坡负样本可以明显提高易发性精度。研究成果可为滑坡易发性中负样本的选择和评价模型构建提供参考同时也为震后滑坡的防灾减灾提供理论支持。 展开更多
关键词 随机森林(RF) 梯度提升决策树(GBDT) 机器学习 频率比法(FR) 采样策略 同震滑坡 滑坡易发性区划
下载PDF
基于多中心队列数据的机器学习预测重症感染患儿死亡风险和筛选临床特征的研究
8
作者 朱雪梅 陈申成 +4 位作者 章莹莹 陆国平 叶琪 阮彤 郑英杰 《中国循证儿科杂志》 CSCD 北大核心 2024年第1期31-35,共5页
背景科学、有效地预测重症感染患儿死亡关联因素对降低儿童病死率意义重大。既往重症患儿的病情与死亡关系多采用评分预测(如PCIS等),准确度欠佳。目的通过机器学习联合特征筛选的方法,挖掘对重症感染患儿死亡风险具有早期预警作用的敏... 背景科学、有效地预测重症感染患儿死亡关联因素对降低儿童病死率意义重大。既往重症患儿的病情与死亡关系多采用评分预测(如PCIS等),准确度欠佳。目的通过机器学习联合特征筛选的方法,挖掘对重症感染患儿死亡风险具有早期预警作用的敏感指标。设计队列研究。方法基于全国20个省级行政区域的54家PICU的儿童多中心感染性疾病协作网数据库,纳入年龄>28天至18岁、确诊感染和至少有1个器官发生功能障碍的患儿,统计122项临床特征信息,以出PICU时死亡/恶化或治愈/好转为结局,通过机器学习构建逻辑回归模型(LR)、随机森林模型(RF)、极端梯度提升树(XGB)和反向传播神经网络(BP),筛选重要的临床特征建立重症感染患儿死亡风险预测模型。主要结局指标模型接收者操作特征曲线下面积(AUROC)和模型筛选临床特征性能的优劣。结果2022年4月1日至2023年12月31日协作网数据库中入PICU时确诊重症感染且入PICU时、入PICU 24 h时和出PICU时临床特征记录均完整的(病例1738例,经过数据预处理包括异常值处理、缺失值填充、强制值区间范围检验、归一化处理)1738条信息进入机器学习构建模型。存活或好转患儿1396例,死亡或恶化患儿342例(19.6%)。队列数据按4∶1分为训练集(1390条)和验证集(348条),训练集中存活或好转1116条,死亡或恶化274条;验证集中存活或好转280条,死亡或恶化68条。在训练集中,共输入模型122个临床特征,经过机器模型学习以及特征筛选后,在50轮的5折分层交叉验证下,验证集LR、RF和XGB的AUROC为0.74~0.78。LR、RF和XGB选择重要性大于均值的临床特征构建最优临床特征,尚无比较好的衡量BP特征重要性的方法,LR模型较RF和XGB构建的最优临床特征较为接近临床预期。结论机器学习预测儿童重症感染性疾病死亡/恶化结局表现一般,预测模型筛选的临床特征与临床预期尚有距离。 展开更多
关键词 机器学习 儿童重症监护室 感染 随机森林模型 极端梯度提升树
下载PDF
随机梯度下降优化的量子多分类支持向量机 被引量:2
9
作者 韩兴 《福建电脑》 2024年第2期1-6,共6页
为改善大规模数据在经典机器学习多分类任务中的计算负担,本文提出了一种基于随机梯度下降优化的量子多分类支持向量机(SGD-MQSVM)算法。通过采用量子随机梯度下降法获得训练参数,并采用全对多分类支持向量机的量子方法进行多分类。算... 为改善大规模数据在经典机器学习多分类任务中的计算负担,本文提出了一种基于随机梯度下降优化的量子多分类支持向量机(SGD-MQSVM)算法。通过采用量子随机梯度下降法获得训练参数,并采用全对多分类支持向量机的量子方法进行多分类。算法的时间复杂性可将单次迭代的时间复杂度从经典多项式级降低到对数级。 展开更多
关键词 随机梯度下降 量子支持向量机 多分类算法
下载PDF
应用机器学习算法模型预测兴安落叶松地上生物量 被引量:3
10
作者 沐钊颖 张兹鹏 +1 位作者 张浩 姜立春 《东北林业大学学报》 CAS CSCD 北大核心 2024年第3期41-47,共7页
为了准确预测兴安落叶松地上生物量,以小兴安岭201株兴安落叶松地上生物量作为研究对象,以胸径(D)和树高(H)为变量,构建随机森林(RF)、人工神经网络(ANN)、支持向量回归(SVR)和梯度提升回归树(GBRT)等4种机器学习模型,并将机器学习算法... 为了准确预测兴安落叶松地上生物量,以小兴安岭201株兴安落叶松地上生物量作为研究对象,以胸径(D)和树高(H)为变量,构建随机森林(RF)、人工神经网络(ANN)、支持向量回归(SVR)和梯度提升回归树(GBRT)等4种机器学习模型,并将机器学习算法的预测结果与传统二元生物量模型的预测结果进行对比分析。结果表明:对比传统生物量模型,4种机器学习算法的拟合效果与检验精度均有了大幅度提高。模型拟合精度由高到低的顺序为随机森林、梯度提升回归树、人工神经网络、支持向量回归、传统生物量模型;RF模型在各模型中的拟合精度最高,相对于传统生物量模型,RF模型的确定系数(R~2)提升了3.72%,均方根误差(R_(MSE))降低了44.47%,平均绝对误差(M_(AE))降低了42.81%,相对误差绝对值(M_(PB))降低了42.80%,赤池信息准则值降低了18.17%。模型检验精度由高到低的顺序为随机森林、人工神经网络、梯度提升回归树、支持向量回归、传统生物量模型;RF模型在各模型中的预测精度最高,与传统生物量模型相比,RF模型的确定系数(R~2)提升了1.08%,均方根误差(R_(MSE))降低了10.95%,平均绝对误差(M_(AE))降低了10.34%,相对误差绝对值(M_(PB))降低了10.34%,赤池信息准则值降低了5.20%。因此,相对于传统生物量模型,4种机器学习算法模型均可以提高兴安落叶松地上生物量的预测精度,RF模型的预测精度最高。 展开更多
关键词 兴安落叶松 地上生物量 随机森林 人工神经网络 支持向量回归 梯度提升回归树
下载PDF
基于缺失数据填补的油浸式变压器故障诊断 被引量:1
11
作者 廖才波 杨金鑫 +3 位作者 邱志斌 胡雄 蒋子豪 李欣 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期4091-4100,共10页
数据质量是影响变压器故障诊断模型准确性及可靠性的重要因素。针对现有变压器故障诊断模型对数据完整性要求较高等问题,以油浸式变压器为研究对象,提出了一种基于缺失数据填补的变压器故障诊断方法。首先,采用极端随机树(extremely ran... 数据质量是影响变压器故障诊断模型准确性及可靠性的重要因素。针对现有变压器故障诊断模型对数据完整性要求较高等问题,以油浸式变压器为研究对象,提出了一种基于缺失数据填补的变压器故障诊断方法。首先,采用极端随机树(extremely randomized trees,ERT)算法对变压器样本的缺失数据进行填补,通过与多种回归模型对比,评价ERT模型的预测效果。然后,基于油中溶解气体数据,提取能够反映变压器运行状态的16维特征集合,形成完备信息的变压器故障诊断样本。最后,利用树结构概率密度估计(tree-structured parzen estimator,TPE)算法实现梯度提升树(gradient boosting decision tree,GBDT)模型的参数优化,构建基于TPE-GBDT的变压器故障诊断模型。研究结果表明,在对缺失率为10%的变压器样本数据进行填补时,ERT算法的决定系数达到0.96,高于线性回归和随机森林回归等算法。此外,基于ERT填补后的样本数据在TPE-GBDT模型的平均诊断准确率和标准差分别为90.1%和0.036,其准确性和稳定性均优于线性判别分析和随机森林分类等算法。该方法能够有效提升变压器样本质量和故障诊断效果,可为变压器运维检修提供针对性的指导建议。 展开更多
关键词 变压器 缺失数据填补 极端随机树 故障诊断 梯度提升树 油中溶解气体分析
下载PDF
基于残差的分布式光伏发电功率组合预测方法 被引量:1
12
作者 吴明朗 庞振江 +4 位作者 洪海敏 占兆武 靳飞 唐远洋 叶璇 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第3期293-302,共10页
分布式光伏发电功率预测在保障电网运行安全和就近消纳方面发挥着重要作用,为提升分布式光伏发电功率预测精度,提出一种基于多元气象的特征提取方法和基于残差连接的多模型融合的光伏发电功率预测模型.在特征提取时,引入统计、交叉、周... 分布式光伏发电功率预测在保障电网运行安全和就近消纳方面发挥着重要作用,为提升分布式光伏发电功率预测精度,提出一种基于多元气象的特征提取方法和基于残差连接的多模型融合的光伏发电功率预测模型.在特征提取时,引入统计、交叉、周期信息、近似熵和光伏板温度等特征提取方法,实现对时间、气象和发电功率的深层特征提取,丰富模型的输入.在模型构建时,建立基于残差连接的多层模型融合方法,首先提出基于k最近邻(k-nearest neighbor,kNN)的softmax回归预测模型,其次设计3层模型整体结构,并通过残差连接和多层堆叠的方式融合多个预测模型,持续提升光伏发电功率预测精度.基于电力公司真实数据,采用本研究方法与随机森林(random forest,RF)、TabNet和极端梯度提升(extreme gradient boosting,XGBoost)等模型,对光伏发电功率进行预测.结果表明,所提模型在均方根误差、平均绝对误差、均方误差和平均绝对百分比误差等方面可分别降低0.1097、0.0591、0.0507和0.0368,拟合优度可提升0.0804.基于多元气象的特征提取方法和基于残差连接的多模型融合的光伏发电功率预测模型能有效提升分布式光伏发电功率预测的精度和稳定性. 展开更多
关键词 人工智能 太阳能 特征提取 残差连接 随机森林 TabNet 极端梯度提升 功率预测
下载PDF
一种重力梯度/SINS/星光组合导航方法
13
作者 黄志威 踪华 +3 位作者 高朝晖 田雨 张学渊 路坤锋 《航天控制》 CSCD 2024年第2期10-15,共6页
为提高飞行器导航系统的精度和自主性,提出了一种重力梯度/捷联惯导(SINS)/星光组合导航方法。在该组合导航系统中,利用重力梯度信息修正SINS的位置误差,利用星光信息修正SINS的姿态误差,提高飞行器的导航精度和自主性。为了弥补传统容... 为提高飞行器导航系统的精度和自主性,提出了一种重力梯度/捷联惯导(SINS)/星光组合导航方法。在该组合导航系统中,利用重力梯度信息修正SINS的位置误差,利用星光信息修正SINS的姿态误差,提高飞行器的导航精度和自主性。为了弥补传统容积卡尔曼滤波(CKF)算法滤波精度不高的缺点,采用随机加权容积卡尔曼滤波(RWCKF)算法,设计重力梯度/SINS/星光组合导航系统。仿真结果表明,SINS/星光组合导航系统、重力梯度/SINS组合导航系统、合成孔径雷达(SAR)/SINS/星光组合导航系统和提出的重力梯度/SINS/星光自主组合导航系统的定位误差分别为78.1003 m、54.3399 m、39.2776 m和19.8495 m,证明了提出的重力梯度/SINS/星光自主组合导航系统的精度不仅远高于两个子系统,也高于SAR/SINS/星光组合导航系统。 展开更多
关键词 重力梯度 惯性导航 星光导航 随机加权容积卡尔曼滤波
下载PDF
基于决策树集成法的飞行安全和飞行技术影响因素分析
14
作者 栗雪盈 刘超慧 +2 位作者 王淑媛 雷钰炜 张程旖旎 《现代信息科技》 2024年第19期53-56,61,共5页
飞行安全问题是民航业发展的基础和生命线。文章根据QAR监测到的飞行参数中的超限情况,分析影响飞行安全和飞行员飞行技术的主要因素,从而建立基于航空安全分析以及飞行员技术评估的实时自动化预警模型,应用于监测和预警风险,降低飞行... 飞行安全问题是民航业发展的基础和生命线。文章根据QAR监测到的飞行参数中的超限情况,分析影响飞行安全和飞行员飞行技术的主要因素,从而建立基于航空安全分析以及飞行员技术评估的实时自动化预警模型,应用于监测和预警风险,降低飞行事故的发生率。同时,采用灰色关联分析法提取与飞行安全相关的部分数据关键项,并对其重要程度进行分析,采用机器学习模型梯度提升树(GBDT)建立预测方程,从而评估飞行员的飞行技术。研究发现,无线电高度等因素对飞行安全的影响较大,TimeToGearSelUp等指标对飞行员飞行技术评估的重要性较大。 展开更多
关键词 飞行安全 技术评估 灰色关联分析 随机森林 梯度提升树
下载PDF
基于Polyak步长的随机递归梯度算法
15
作者 王福胜 李晓桐 《应用数学》 北大核心 2024年第1期280-288,共9页
针对机器学习中一类有限光滑凸函数和的最小化问题,将随机递归梯度算法和Polyak步长结合,提出基于Polyak步长的随机递归梯度算法(SARAH-Polyak).分别在强凸和一般凸条件下证明了算法的线性收敛性.实验结果表明SARAH-Polyak算法的有效性.
关键词 Polyak步长 随机递归 梯度下降
下载PDF
基于CNN-LSTM的复合神经网络在油田污水系统故障诊断中的应用
16
作者 钟艳 《吉林大学学报(信息科学版)》 CAS 2024年第5期817-828,共12页
为提高油田污水系统故障诊断的智能化水平和准确性,利用卷积神经网络以及长短期记忆网络构建复合神经网络,并采用Adam与随机梯度下降法对结构进行优化,使模型收敛速度以及故障诊断精度得到提升。通过相关实验研究结果表明,采用的优化算... 为提高油田污水系统故障诊断的智能化水平和准确性,利用卷积神经网络以及长短期记忆网络构建复合神经网络,并采用Adam与随机梯度下降法对结构进行优化,使模型收敛速度以及故障诊断精度得到提升。通过相关实验研究结果表明,采用的优化算法使模型准确度提升至0.87左右,模型诊断损失率降至0.032左右;复合神经网络结构的平均检测精度达到0.888,准确值达到0.883,召回率达到0.789。将复合神经网络应用于油田污水系统故障诊断中,使油田污水系统实现智能故障检测,并能降低经济成本,益于智慧油田建设。 展开更多
关键词 卷积神经网络-长短期记忆 复合神经网络 污水系统 故障检测 随机梯度下降法 智慧油田
下载PDF
异步联邦学习中隔代模型泄露攻击及防治方法
17
作者 胡智尧 于淼 田开元 《空军工程大学学报》 CSCD 北大核心 2024年第5期121-127,共7页
联邦学习已成为数据孤岛背景下知识共享的成功方案。随着梯度逆向推理等新式攻击手段的问世,联邦学习的安全性再度面临新挑战。针对联邦学习可能存在参与者恶意窃取其它客户端梯度信息的风险,提出一种异步联邦学习框架下的隔代模型泄露... 联邦学习已成为数据孤岛背景下知识共享的成功方案。随着梯度逆向推理等新式攻击手段的问世,联邦学习的安全性再度面临新挑战。针对联邦学习可能存在参与者恶意窃取其它客户端梯度信息的风险,提出一种异步联邦学习框架下的隔代模型泄露攻击方式:利用中心服务器“接收则聚合”的特点,多名恶意客户端可按照特定更新顺序,通过隔代版本的全局模型差异逆向计算其他客户端的模型更新数据,从而窃取对方的模型。针对此问题,提出基于α-滑动平均的随机聚合算法。首先,中心服务器每次收到客户端的模型更新后,将其与从最近α次聚合中随机选出的全局模型进行聚合,打乱客户端的更新顺序;其次,随着全局迭代次数增加,中心服务器对最近α次聚合的全局模型进行滑动平均,计算出最终全局模型。实验结果表明,与异步联邦学习方法相比,FedAlpha方法有效降低隔代模型泄露攻击的可能性。 展开更多
关键词 异步联邦学习安全 逆向推理攻击 随机聚合 滑动平均 隔代模型泄露攻击
下载PDF
基于改进随机森林的工业互联网安全态势评估方法
18
作者 胡向东 万润楠 《电子学报》 EI CAS CSCD 北大核心 2024年第3期783-791,共9页
针对工业互联网安全态势评估存在数据特征提取困难和安全态势评估准确率低等难题,提出一种基于改进随机森林的工业互联网安全态势评估方法.基于随机采样技术平衡原始数据集以减小不平衡数据集对实验的影响;利用梯度提升决策树确定工业... 针对工业互联网安全态势评估存在数据特征提取困难和安全态势评估准确率低等难题,提出一种基于改进随机森林的工业互联网安全态势评估方法.基于随机采样技术平衡原始数据集以减小不平衡数据集对实验的影响;利用梯度提升决策树确定工业互联网流量数据中不同特征的权重系数,结合递归特征消除法提取其关键特征;构建基于改进随机森林的工业互联网多分类攻击检测模型,识别网络受到的攻击类别,并结合安全态势量化指标确定其风险程度.实验结果表明,本文算法的检测准确率和F1值分别达到89.19%和89.68%,相较于传统随机森林算法、支持向量机和K最近邻算法,其准确率和F1值分别至少提高2.91%和1.7%,平均分别提高8.38%和9.33%. 展开更多
关键词 工业互联网 态势评估 特征提取 梯度提升决策树 随机森林
下载PDF
城市化背景下景观格局对天津市生态系统服务供需匹配的影响
19
作者 李佳滢 杨冬冬 +2 位作者 杨菲 张颖 王洪成 《生态学报》 CAS CSCD 北大核心 2024年第12期4987-5002,共16页
揭示城市化驱动下景观格局指数变化与生态系统服务供需匹配的交互关系,对于优化景观生态规划以及促进城市生态系统的可持续发展具有重要作用。以天津市为例,运用GIS空间分析、双变量空间自相关与随机森林回归等方法,评估了碳储量、生境... 揭示城市化驱动下景观格局指数变化与生态系统服务供需匹配的交互关系,对于优化景观生态规划以及促进城市生态系统的可持续发展具有重要作用。以天津市为例,运用GIS空间分析、双变量空间自相关与随机森林回归等方法,评估了碳储量、生境质量与空气净化服务供需匹配度的空间分布特征,分析了景观格局指数沿城市化梯度的变化趋势,进而探讨了景观格局指数与生态系统服务供需匹配度的交互关系。结果表明:(1)天津市碳储量、生境质量与空气净化服务的供给和需求呈现出明显的空间错位关系,城市化综合发展水平对典型生态系统服务的供需匹配度具有显著负面影响;(2)景观水平上的景观格局指数沿城乡梯度呈现非线形的变化趋势,最大斑块指数、Shannon多样性指数以及斑块密度等多个指数在城市化综合发展水平20%—30%左右出现明显拐点;类型水平上的建设用地最大斑块指数与斑块内聚力指数等呈现增长态势,而林地与耕地的最大斑块指数等持续降低;(3)景观格局指数对生态系统服务供需匹配度的解释力度在类型水平上的贡献整体大于景观水平。研究结果可为天津市景观生态规划的管理与决策提供有益参考,有助于城市生态系统服务供需关系的协调与平衡。 展开更多
关键词 城市生态系统服务 景观格局 城乡梯度 供需匹配 随机森林
下载PDF
基于深度学习的理论线损率计算方法研究
20
作者 尚云飞 姜明军 +1 位作者 张东平 赵旻昱 《电测与仪表》 北大核心 2024年第10期33-38,81,共7页
线损率是综合反映电网规划、生产、管理等的重要经济技术指标,针对目前计算方法存在的计算速度慢和误差大等问题,提出了一种结合深层置信网络和深层神经网络的理论线损率计算模型。将计算过程转化为多特征提取过程,模型通过逐层贪婪法... 线损率是综合反映电网规划、生产、管理等的重要经济技术指标,针对目前计算方法存在的计算速度慢和误差大等问题,提出了一种结合深层置信网络和深层神经网络的理论线损率计算模型。将计算过程转化为多特征提取过程,模型通过逐层贪婪法和随机小批量梯度下降法等进行训练。通过算例与传统模型进行对比分析。结果表明,与传统的线损率计算方法相比,所提方法无论是精度还是效率都有一定的提升,表明了所提方法的优越性,具有一定的实用价值。 展开更多
关键词 线损率 深度置信网络 深层神经网络 逐层贪婪法 随机小批量梯度下降法
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部