期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CYCLIC DEFORMATION OF COARSE GRAINED POLYCRYSTALLINE PURE Ai——Ⅰ.SLIP CHARACTERISTICS
1
作者 XIA Yuebo WANG Zhongguang State Key Laboratory for Fatigue and Failure of Materials,Institute of Metal Research,Academia Sinica,Shenyang,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1992年第4期272-277,共6页
Comparing with ordinary ploycrystalline materials sized to μm grade,the slip morphology of the coarse grained polycrystalline pure Al is characterized by:(1)several slip domains occur in a grain,and in same domain,se... Comparing with ordinary ploycrystalline materials sized to μm grade,the slip morphology of the coarse grained polycrystalline pure Al is characterized by:(1)several slip domains occur in a grain,and in same domain,several slip systems operate at same time or one after another intensely,a beautiful and neat slip pattern is forming on the specimen surface;(2)for high Σ-value coincident and random grain boundaries,the grain boundary affecting zone (GBAZ),bout 50—120μm wide,is favourable site to form intergranular crack at early fa- tigue life easily,and migration or slide of the boundaries were often observed.While low Σ-value near-coincident grain boundaries show a higher degree of slip continuity and strain compatibility than high Σ-value ones.Intergranular crack is not easily nucleated at low Σ-value near-coincident boundaries;and(3)due to suppression of grain boundary slip at triple grain boundary node,the high Σ-value and random grain boundary among the three boundaries of tricrystal crack easily during cyclic deformation. 展开更多
关键词 coincident grain boundary random grain boundary intergranular crack boundary slide serrated grain boundary
下载PDF
Retarding the precipitation of η phase in Fe-Ni based alloy through grain boundary engineering 被引量:2
2
作者 Honglei Hu Mingjiu Zhao Lijian Rong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第12期152-161,共10页
It is important to inhibit the precipitation of η phases in precipitation strengthened Fe-Ni based alloys,as they will deteriorate not only the mechanical property but also the hydrogen resistance.The present investi... It is important to inhibit the precipitation of η phases in precipitation strengthened Fe-Ni based alloys,as they will deteriorate not only the mechanical property but also the hydrogen resistance.The present investigation shows that grain boundary engineering(GBE) can retard the formation and growth of ηphase in J75 alloy.After GBE treatment with 5% cold rolling followed by annealing at 1000℃ for 1 h,the fraction of special boundaries(SBs) increases from 38.4% in conventional alloy to 77.2% and the fraction of special triple junctions increases from 10% to 74%.During 800℃ aging treatment,quite amount of cellular η phases adjacent to random grain boundary(RGB) will be found in conventional alloy,and only a few small η phases have been observed in GBE treatment alloy subjected to the same aging treatment for long time.The reason for GBE in inhibiting precipitation of η phase can be attributed to not only introducing high fraction of SBs but also breaking the connectivity of RGB networks.As nucleation and growth of η phases on SBs are difficult due to their lower Ti concentration and diffusion rate,and the disruption of RGB networks reduces supply of Ti atoms to the η phases significantly,which impedes their growth at RGB. 展开更多
关键词 Fe-Ni based alloy ηphase Precipitation behavior random grain boundary connectivity grain boundary engineering boundary diffusion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部