In this article,we investigate a stochastic Galerkin method for the Maxwell equations with random inputs.The generalized Polynomial Chaos(gPC)expansion technique is used to obtain a deterministic system of the gPC exp...In this article,we investigate a stochastic Galerkin method for the Maxwell equations with random inputs.The generalized Polynomial Chaos(gPC)expansion technique is used to obtain a deterministic system of the gPC expansion coefficients.The regularity of the solution with respect to the random is analyzed.On the basis of the regularity results,the optimal convergence rate of the stochastic Galerkin approach for Maxwell equations with random inputs is proved.Numerical examples are presented to support the theoretical analysis.展开更多
For structure system with fuzzy input variables as well as random ones, a new importance measure system is presented for evaluating the effects of the two kinds of input variables on the output response. Based on the ...For structure system with fuzzy input variables as well as random ones, a new importance measure system is presented for evaluating the effects of the two kinds of input variables on the output response. Based on the fact that the fuzziness of the output response is determined by that of the input variable, the presented measure system defines the importance measures which evaluate the effect of the fuzzy input variable. And for the random input variable, the importance measure system analyzes its effect from two aspects, i.e. its effect on the central distribution position and that on the fuzzy degree of the membership function of the output response. Taking the effects of the two kinds of input variables on the first moment and second one of the output response into account, the definitions of the importance measures of the input variables are given and their engineering significations are demonstrated. Combining with the advantages of the point estimates of Zhao and Ono, a solution of the proposed importance measures is provided. Several examples show that the proposed measure system is comprehensive and reasonable, and the proposed solution can improve computational efficiency considerably with acceptable precision.展开更多
基金Supported by NSFC (91430107/11771138/11171104)the Construct Program of the Key Discipline in Hunan+4 种基金partially supported by Scientific Research Fund of Hunan Provincial Education Department (19B325/19C1059)Hunan International Economics University (2017A05)supported by NSFC (11771137)the Construct Program of the Key Discipline in Hunan Provincea Scientific Research Fund of Hunan Provincial Education Department (16B154)。
文摘In this article,we investigate a stochastic Galerkin method for the Maxwell equations with random inputs.The generalized Polynomial Chaos(gPC)expansion technique is used to obtain a deterministic system of the gPC expansion coefficients.The regularity of the solution with respect to the random is analyzed.On the basis of the regularity results,the optimal convergence rate of the stochastic Galerkin approach for Maxwell equations with random inputs is proved.Numerical examples are presented to support the theoretical analysis.
基金supported by the National Natural Science Foundation of China (Grant No. NSFC 50875213)
文摘For structure system with fuzzy input variables as well as random ones, a new importance measure system is presented for evaluating the effects of the two kinds of input variables on the output response. Based on the fact that the fuzziness of the output response is determined by that of the input variable, the presented measure system defines the importance measures which evaluate the effect of the fuzzy input variable. And for the random input variable, the importance measure system analyzes its effect from two aspects, i.e. its effect on the central distribution position and that on the fuzzy degree of the membership function of the output response. Taking the effects of the two kinds of input variables on the first moment and second one of the output response into account, the definitions of the importance measures of the input variables are given and their engineering significations are demonstrated. Combining with the advantages of the point estimates of Zhao and Ono, a solution of the proposed importance measures is provided. Several examples show that the proposed measure system is comprehensive and reasonable, and the proposed solution can improve computational efficiency considerably with acceptable precision.