In this study,a method was presented to accurately obtain the extinction characteristics of the non-spherical biological particle aggregates.Based on the multi-sphere particle model of non-spherical particles,a random...In this study,a method was presented to accurately obtain the extinction characteristics of the non-spherical biological particle aggregates.Based on the multi-sphere particle model of non-spherical particles,a randomly oriented aggregation model was firstly built to construct the aggregates.The discrete-dipole approximation method was used to calculate the extinction characteristics of aggregates in the 3–14 μm waveband.The average mass extinction coefficients of three materials are 0.802 m~2/g,0.907 m~2/g,and 0.866 m~2/g in the 3–5 μm waveband and 0.590 m~2/g,0.402 m~2/g,and 0.523 m~2/g in the8–14 μm band,respectively.Smoke chamber experimental results are in good agreement with theoretical analyses.展开更多
基金supported by the National Natural Science Foundation of China (No.62075241)the Advanced Laser Technology Laboratory Foundation of Anhui Province of China (No.20191003)。
文摘In this study,a method was presented to accurately obtain the extinction characteristics of the non-spherical biological particle aggregates.Based on the multi-sphere particle model of non-spherical particles,a randomly oriented aggregation model was firstly built to construct the aggregates.The discrete-dipole approximation method was used to calculate the extinction characteristics of aggregates in the 3–14 μm waveband.The average mass extinction coefficients of three materials are 0.802 m~2/g,0.907 m~2/g,and 0.866 m~2/g in the 3–5 μm waveband and 0.590 m~2/g,0.402 m~2/g,and 0.523 m~2/g in the8–14 μm band,respectively.Smoke chamber experimental results are in good agreement with theoretical analyses.