We investigate the impact of random telegraph noise(RTN) on the threshold voltage of multi-level NOR flash memory.It is found that the threshold voltage variation(?Vth) and the distribution due to RTN increase wi...We investigate the impact of random telegraph noise(RTN) on the threshold voltage of multi-level NOR flash memory.It is found that the threshold voltage variation(?Vth) and the distribution due to RTN increase with the programmed level(Vth) of flash cells. The gate voltage dependence of RTN amplitude and the variability of RTN time constants suggest that the large RTN amplitude and distribution at the high program level is attributed to the charge trapping in the tunneling oxide layer induced by the high programming voltages. A three-dimensional TCAD simulation based on a percolation path model further reveals the contribution of those trapped charges to the threshold voltage variation and distribution in flash memory.展开更多
For motion planning of concrete pump truck( CPT) with end-effector's hosepipe path, this paper sets up the mathematic model,including definition of its motion planning,description of its state in C space( configur...For motion planning of concrete pump truck( CPT) with end-effector's hosepipe path, this paper sets up the mathematic model,including definition of its motion planning,description of its state in C space( configuration space) and its path length. An advanced rapidly-exploring random trees( RRT) algorithm is proposed, in which each tracing point dispersed from the end hosepipe path can map multi-states of CPT so as to make variety of motion path of CPT. For increasing search efficiency and motion path quality,this algorithm generates any random states of CPT in certain probability to trend to the initial state or target state mapped with the end hosepipe path,and to have the least cost between this random state and its parent state. A typical case and two special cases are analyzed in which the end hosepipe paths are reciprocating linear trajectory and planar or spatial sine curves respectively. Their results verify the feasibility and validity of the proposed algorithm.展开更多
Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance...Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.展开更多
A effective approximate scheme which is combined by cluster with the discrelized path-integral representation (DPIR) is used in the study on the random-bond Ising model in a transverse field (RTIM). The critical therm...A effective approximate scheme which is combined by cluster with the discrelized path-integral representation (DPIR) is used in the study on the random-bond Ising model in a transverse field (RTIM). The critical thermodynamical properties, such as the critical temperature, the critical transverse field, the average magnetization ,the susceptibility and the special heat atc.. are calculated, And some results have been improved.展开更多
针对无人机路径规划求解计算量大、难收敛等问题,提出了一种基于全粒子推动野马算法的路径规划方法。建立三维环境模型与路径代价模型,将路径规划问题转化为多维函数优化问题;采用一种自适应邻域搜索策略,改善算法的开发能力;利用高斯...针对无人机路径规划求解计算量大、难收敛等问题,提出了一种基于全粒子推动野马算法的路径规划方法。建立三维环境模型与路径代价模型,将路径规划问题转化为多维函数优化问题;采用一种自适应邻域搜索策略,改善算法的开发能力;利用高斯随机游走策略对个体的历史最优位置进行回溯搜索,改善算法的探索能力;考虑到自适应策略对初始种群多样性敏感的问题,结合Tent混沌映射初始化种群,提高算法的鲁棒性以及全局寻优能力;将提出的改进算法在13个经典测试函数中进行性能验证,并移植于无人机三维路径规划问题中。在30峰、40峰、50峰的环境模型下进行测试,与遗传算法、粒子群算法、SRM-PSO(self-regulating and self-perception particle swarm optimization with mutation mechanism)算法以及野马算法对比,全粒子推动野马算法皆取得最短平均路径,且在所有测试中都找到满足约束、无碰的路径。仿真结果证明,在复杂环境下全粒子推动野马算法具有优秀的全局寻优能力以及较好的鲁棒性。展开更多
基金supported by the National Research Program of China(Grant No.2016YFB0400402)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20141321)the National Natural Science Foundation of China(Grant No.61627804)
文摘We investigate the impact of random telegraph noise(RTN) on the threshold voltage of multi-level NOR flash memory.It is found that the threshold voltage variation(?Vth) and the distribution due to RTN increase with the programmed level(Vth) of flash cells. The gate voltage dependence of RTN amplitude and the variability of RTN time constants suggest that the large RTN amplitude and distribution at the high program level is attributed to the charge trapping in the tunneling oxide layer induced by the high programming voltages. A three-dimensional TCAD simulation based on a percolation path model further reveals the contribution of those trapped charges to the threshold voltage variation and distribution in flash memory.
基金Nature Science Foundation of Liaoning Province,China(No.201102025)Dalian Science and Technology Plan Project,China(Nos.2012A17GX122,2013A16GX111)Fundamental Research Funds for the Central Universities,China(No.DUT14ZD221)
文摘For motion planning of concrete pump truck( CPT) with end-effector's hosepipe path, this paper sets up the mathematic model,including definition of its motion planning,description of its state in C space( configuration space) and its path length. An advanced rapidly-exploring random trees( RRT) algorithm is proposed, in which each tracing point dispersed from the end hosepipe path can map multi-states of CPT so as to make variety of motion path of CPT. For increasing search efficiency and motion path quality,this algorithm generates any random states of CPT in certain probability to trend to the initial state or target state mapped with the end hosepipe path,and to have the least cost between this random state and its parent state. A typical case and two special cases are analyzed in which the end hosepipe paths are reciprocating linear trajectory and planar or spatial sine curves respectively. Their results verify the feasibility and validity of the proposed algorithm.
基金supported by National Natural Science Foundation of China(Grant No. 51275047)Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing of China(Grant No. 07205)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20091101110010)
文摘Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.
文摘A effective approximate scheme which is combined by cluster with the discrelized path-integral representation (DPIR) is used in the study on the random-bond Ising model in a transverse field (RTIM). The critical thermodynamical properties, such as the critical temperature, the critical transverse field, the average magnetization ,the susceptibility and the special heat atc.. are calculated, And some results have been improved.
文摘针对无人机路径规划求解计算量大、难收敛等问题,提出了一种基于全粒子推动野马算法的路径规划方法。建立三维环境模型与路径代价模型,将路径规划问题转化为多维函数优化问题;采用一种自适应邻域搜索策略,改善算法的开发能力;利用高斯随机游走策略对个体的历史最优位置进行回溯搜索,改善算法的探索能力;考虑到自适应策略对初始种群多样性敏感的问题,结合Tent混沌映射初始化种群,提高算法的鲁棒性以及全局寻优能力;将提出的改进算法在13个经典测试函数中进行性能验证,并移植于无人机三维路径规划问题中。在30峰、40峰、50峰的环境模型下进行测试,与遗传算法、粒子群算法、SRM-PSO(self-regulating and self-perception particle swarm optimization with mutation mechanism)算法以及野马算法对比,全粒子推动野马算法皆取得最短平均路径,且在所有测试中都找到满足约束、无碰的路径。仿真结果证明,在复杂环境下全粒子推动野马算法具有优秀的全局寻优能力以及较好的鲁棒性。