As the use of mobile devices continues to rise,trust administration will significantly improve security in routing the guaranteed quality of service(QoS)supply in Mobile Ad Hoc Networks(MANET)due to the mobility of th...As the use of mobile devices continues to rise,trust administration will significantly improve security in routing the guaranteed quality of service(QoS)supply in Mobile Ad Hoc Networks(MANET)due to the mobility of the nodes.There is no continuance of network communication between nodes in a delay-tolerant network(DTN).DTN is designed to complete recurring connections between nodes.This approach proposes a dynamic source routing protocol(DSR)based on a feed-forward neural network(FFNN)and energybased random repetition trust calculation in DTN.If another node is looking for a node that swerved off of its path in this situation,routing will fail since it won’t recognize it.However,in the suggested strategy,nodes do not stray from their pathways for routing.It is only likely that the message will reach the destination node if the nodes encounter their destination or an appropriate transitional node on their default mobility route,based on their pattern of mobility.The EBRRTC-DTN algorithm(Energy based random repeat trust computation)is based on the time that has passed since nodes last encountered the destination node.Compared to other existing techniques,simulation results show that this process makes the best decision and expertly determines the best and most appropriate route to send messages to the destination node,which improves routing performance,increases the number of delivered messages,and decreases delivery delay.Therefore,the suggested method is better at providing better QoS(Quality of Service)and increasing network lifetime,tolerating network system latency.展开更多
Diversity analysis among 23 rice varieties including 16 non-basmati scented accessions, 5 basmati accessions and 2 non-scented accessions was performed by random amplified polymorphic DNA (RAPD) and inter-simple seq...Diversity analysis among 23 rice varieties including 16 non-basmati scented accessions, 5 basmati accessions and 2 non-scented accessions was performed by random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) marker systems. The varieties analyzed by 11 RAPD and 8 ISSR primers yielded an average of 65% and 80% polymorphism, respectively. The average number of polymorphic bands generated per RAPD primer was 6 and per ISSR primer was 5.87. RAPD and ISSR data analysis individually could not segregate basmati and non-basmati scented rice accessions. However, the analysis using a combined data could group basmati and non-basmati scented rice accessions separately. The bands present specifically among three accessions of non-basmati scented rice were also identified. The study revealed a high genetic diversity among non-basmati scented rice accessions.展开更多
文摘As the use of mobile devices continues to rise,trust administration will significantly improve security in routing the guaranteed quality of service(QoS)supply in Mobile Ad Hoc Networks(MANET)due to the mobility of the nodes.There is no continuance of network communication between nodes in a delay-tolerant network(DTN).DTN is designed to complete recurring connections between nodes.This approach proposes a dynamic source routing protocol(DSR)based on a feed-forward neural network(FFNN)and energybased random repetition trust calculation in DTN.If another node is looking for a node that swerved off of its path in this situation,routing will fail since it won’t recognize it.However,in the suggested strategy,nodes do not stray from their pathways for routing.It is only likely that the message will reach the destination node if the nodes encounter their destination or an appropriate transitional node on their default mobility route,based on their pattern of mobility.The EBRRTC-DTN algorithm(Energy based random repeat trust computation)is based on the time that has passed since nodes last encountered the destination node.Compared to other existing techniques,simulation results show that this process makes the best decision and expertly determines the best and most appropriate route to send messages to the destination node,which improves routing performance,increases the number of delivered messages,and decreases delivery delay.Therefore,the suggested method is better at providing better QoS(Quality of Service)and increasing network lifetime,tolerating network system latency.
文摘Diversity analysis among 23 rice varieties including 16 non-basmati scented accessions, 5 basmati accessions and 2 non-scented accessions was performed by random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) marker systems. The varieties analyzed by 11 RAPD and 8 ISSR primers yielded an average of 65% and 80% polymorphism, respectively. The average number of polymorphic bands generated per RAPD primer was 6 and per ISSR primer was 5.87. RAPD and ISSR data analysis individually could not segregate basmati and non-basmati scented rice accessions. However, the analysis using a combined data could group basmati and non-basmati scented rice accessions separately. The bands present specifically among three accessions of non-basmati scented rice were also identified. The study revealed a high genetic diversity among non-basmati scented rice accessions.