期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
改进双分支胶囊网络的高光谱图像分类 被引量:1
1
作者 张海涛 柴思敏 《计算机科学与探索》 CSCD 北大核心 2022年第10期2405-2414,共10页
基于双分支的胶囊网络分类方法在两个通道分别提取光谱信息和空间信息,既保留了双分支卷积神经网络的特征提取方式,又提高了分类精度。但由于高光谱图像(HSI)通常由几百个通道组成,在训练胶囊网络时,动态路由过程产生了大量的训练参数... 基于双分支的胶囊网络分类方法在两个通道分别提取光谱信息和空间信息,既保留了双分支卷积神经网络的特征提取方式,又提高了分类精度。但由于高光谱图像(HSI)通常由几百个通道组成,在训练胶囊网络时,动态路由过程产生了大量的训练参数。为此提出1D和2D约束窗口分别减少来自两个提取通道的胶囊数量。它以胶囊向量组为计算单位进行卷积运算,来减少胶囊网络的参数量和计算复杂度。基于该降参优化方法提出一个新的双分支胶囊神经网络(DuB-ConvCapsNet-MRF),并将其应用在高光谱图像分类任务中。此外,为进一步提高分类性能,引入马尔可夫随机场(MRF)对空间区域进行平滑后处理,获得最终输出。对两个代表性高光谱图像数据集进行消融实验并与现有的6个分类方法进行比较,结果表明,DuB-ConvCapsNet-MRF在分类精度上都优于其他方法,并且有效降低了胶囊网络的训练代价。 展开更多
关键词 遥感 高光谱图像分类 胶囊神经网络 约束窗口 马尔可夫随机场(MRF)
下载PDF
Designs to Improve Capability of Neural Networks to Make Structural Predictions 被引量:1
2
作者 Tian-Yao Wang Jian-Feng Li +1 位作者 Hong-Dong Zhang Jeff Z.Y.Chen 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第9期1477-1485,I0009,共10页
A deep neural network model generally consists of different modules that play essential roles in performing a task.The optimal design of a module for use in modeling a physical problem is directly related to the succe... A deep neural network model generally consists of different modules that play essential roles in performing a task.The optimal design of a module for use in modeling a physical problem is directly related to the success of the model.In this work,the effectiveness of a number of special modules,the self-attention mechanism for recognizing the importance of molecular sequence information in a polymer,as well as the big-stride representation and conditional random field for enhancing the network ability to produce desired local configurations,is numerically studied.Network models containing these modules are trained by using the well documented data of the native structures of the HP model and assessed according to their capability in making structural predictions of unseen data.The specific network design of self-attention mechanism adopted here is modified from a similar idea in natural language recognition.The big-stride representation module introduced in this work is shown to drastically improve network's capability to model polymer segments of strong lattice position correlations. 展开更多
关键词 Deep neural network self-attention mechanism Big-stride representation Conditional random methods
原文传递
基于数据驱动的综采工作面采运协同控制方法研究
3
作者 皮国强 沈贵阳 +1 位作者 常海军 张连东 《工矿自动化》 CSCD 北大核心 2023年第12期47-55,共9页
目前针对采煤机与刮板输送机协同控制的研究初步建立了采运系统协同控制机制,但均未考虑非结构化综采工作面环境下,影响采运系统稳定运行因素的不确定性和耦合特性,以及煤流状态和刮板输送机负载电流受井下电气系统影响而无法真实反映... 目前针对采煤机与刮板输送机协同控制的研究初步建立了采运系统协同控制机制,但均未考虑非结构化综采工作面环境下,影响采运系统稳定运行因素的不确定性和耦合特性,以及煤流状态和刮板输送机负载电流受井下电气系统影响而无法真实反映刮板输送机负载变化的情况。针对上述问题,提出了一种基于刮板输送机负载电流强化和随机自注意力胶囊神经网络(RSACNN)的综采工作面采运协同控制方法。针对刮板输送机电动机电流的电气耦合特性,运用电流强化模型对原始刮板输送机电流进行预处理,得到能够反映煤流系统真实负载的电流分量。针对综采工作面采运系统运行状态参数与采煤机牵引速度存在着高度非线性和不确定性关系,难以建立精确数学模型的问题,基于胶囊神经网络(CNN)可保存综采工作面采运系统运行状态突变等细粒度特征的特性,建立了基于RSACNN的综采工作面采运协同控制模型。实验结果表明:RSACNN算法与自注意力胶囊神经网络(SACNN)算法、CNN算法的调速结果相比,预测的采煤机牵引速度精度更高,预测速度与真实速度的拟合度分别提高了0.03205和0.07504;平均绝对误差分别降低了17.7%,22.6%;平均绝对百分误差分别降低了49.9%,71.5%;均方根误差分别降低了13.3%,34.6%。 展开更多
关键词 综采工作面 采煤机 刮板输送机 采运协同控制 随机自注意力胶囊神经网络 采煤机牵引速度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部