In this paper, an approach to predicting randomly-shaped particle volume based on its two- Dimensional (2-D) digital image is explored. Conversion of gray-scale image of the particles to its binary counterpart is fi...In this paper, an approach to predicting randomly-shaped particle volume based on its two- Dimensional (2-D) digital image is explored. Conversion of gray-scale image of the particles to its binary counterpart is first performed using backlighting technique. The silhouette of particle is thus obtained, and consequently, informative features such as particle area, centroid and shape-related descriptors are collected. Several dimensionless parameters are defined, and used as regressor variables in a multiple linear regression model to predict particle volume. Regressor coefficients are found by fitting to a randomly selected sample of 501 panicles ranging in size from 4.75mm to 25ram. The model testing experiment is conducted against a different aggregate sample of the similar statistical properties, the errors of the model-predicted volume of the batch is within ±2%.展开更多
In this study, we investigated the natural growth of Haloxylon ammodendron forest in Moso Bay, southwest of Gurbantunggut Desert. Random sample analysis was used to analyze the spatial point pattern performance of Hal...In this study, we investigated the natural growth of Haloxylon ammodendron forest in Moso Bay, southwest of Gurbantunggut Desert. Random sample analysis was used to analyze the spatial point pattern performance of Haloxylon ammodendron population. ArcGIS software was used to summarize and analyze the spatial point pattern response of Haloxylon ammodendron population. The results showed that: 1) There were significant differences in the performance of point pattern analysis among different random quadrants. The paired t-test for variance mean ratio showed that the P values were 0.048, 0.004 and 0.301 respectively, indicating that the influence of quadrat shape on the performance of point pattern analysis was significant under the condition of the same optimal quadrat area. 2) The comparative analysis of square shapes shows that circular square is the best, square and regular hexagonal square are the second, and there is no significant difference between square and regular hexagonal square. 3) The number of samples plays a decisive role in spatial point pattern analysis. Insufficient sample size will lead to unstable results. With the increase of the number of samples to more than 120, the V value and P value curves will eventually stabilize. That is, stable spatial point pattern analysis results are closely related to the increase of the number of samples in random sample square analysis.展开更多
Wave pressure on the wet surface of a V-shaped floating breakwater in random seas is investigated. Considering the diffraction effect, the unit velocity potential caused by the single regular waves around the breakwat...Wave pressure on the wet surface of a V-shaped floating breakwater in random seas is investigated. Considering the diffraction effect, the unit velocity potential caused by the single regular waves around the breakwater is solved using the finite-depth Green function and boundary element method, in which the Green function is solved by integral method. The Response-Amplitude Operator(RAO) of wave pressure is acquired according to the Longuet-Higgins' wave model and the linear Bernoulli equation. Furthermore, the wave pressure's response spectrum is calculated according to the wave spectrum by discretizing the frequency domain. The wave pressure's characteristic value corresponding to certain cumulative probability is determined according to the Rayleigh distribution of wave heights. The numerical results and field test results are compared, which indicates that the wave pressure calculated in random seas agrees with that of field measurements. It is found that the bigger angle between legs will cause the bigger pressure response, while the increase in leg length does not influence the pressure significantly. The pressure at the side of head sea is larger than that of back waves. When the incident wave angle changes from 0? to 90?, the pressure at the side of back waves decreases clearly, while at the side of head sea, the situation is more complicated and there seems no obvious tendency. The concentration of wave energy around low frequency(long wavelength) will induce bigger wave pressure, and more attention should be paid to this situation for the structure safety.展开更多
The geographical variations in life history characteristics of small yellow croaker Larimichthys polyactis, caused by experienced different environmental conditions, have been observed in China seas. Previous studies ...The geographical variations in life history characteristics of small yellow croaker Larimichthys polyactis, caused by experienced different environmental conditions, have been observed in China seas. Previous studies based on spatial distribution, migration route, and body morphometrics suggested a complex stock structure. In this study, to clarify the source of a spawning stock, we investigated the reproduction strategy and inter-structure of the Haizhou Bay (HZB) spawning stock in the middle Yellow Sea from both egg survey and adult otolith increment analysis. Egg and adult samples were collected from three surveys during spawning season in 2013. Distinct spatial and temporal variations were detected in egg distribution and size, and otolith shape analysis of adult fishes revealed two morphotypes with different increment growth using random forest cluster. The results indicate the existence of two components within the same spawning stock in HZB from different wintering grounds, and accordingly special protection should be required for this stock given the significance to maintain connectivity between adjacent subpopulations.展开更多
A cup shape is a dynamic morphology of cells and organelles. With the aim of elucidating the formation of the biotic cup-shaped morphology, this study investigated cup-shaped vesicles consisting of an amphiphilic dibl...A cup shape is a dynamic morphology of cells and organelles. With the aim of elucidating the formation of the biotic cup-shaped morphology, this study investigated cup-shaped vesicles consisting of an amphiphilic diblock copolymer from the aspect of synthetic polymer chemistry. Cup-shaped vesicles were obtained by the polymerization-induced self-assembly of poly(methacrylic acid)-block-poly(n-butyl methacrylate-random-methacrylic acid), PMAA-b-P(BMA-r-MAA), in an aqueous methanol solution using the photo nitroxide-mediated controlled/living radical polymerization technique. Field emission scanning electron microscopic observations demonstrated that the cup-shaped vesicles were suddenly formed during the late stage of the polymerization due to the extension of the hydrophobic P(BMA-r-MAA) block chain. During the early stage, the polymerization produced spherical vesicles rather than a cup shape. As the hydrophobic block chain was extended by the polymerization progress, the spherical vesicles reduced the size and were accompanied by the generation of small particles that were attached to the vesicles. The vesicles continued to reduce the size due to further extension of the hydrophobic chain;however, they suddenly grew into cup-shaped vesicles. This growth was accounted for by a change in the critical packing shape of the copolymer due to the hydrophobic chain extension. These findings are helpful for a better understanding of the biotic cup-shaped vesicle formation.展开更多
Radial Basis Function methods for scattered data interpolation and for the numerical solution of PDEs were originally implemented in a global manner. Subsequently, it was realized that the methods could be implemented...Radial Basis Function methods for scattered data interpolation and for the numerical solution of PDEs were originally implemented in a global manner. Subsequently, it was realized that the methods could be implemented more efficiently in a local manner and that the local approaches could match or even surpass the accuracy of the global implementations. In this work, three localization approaches are compared: a local RBF method, a partition of unity method, and a recently introduced modified partition of unity method. A simple shape parameter selection method is introduced and the application of artificial viscosity to stabilize each of the local methods when approximating time-dependent PDEs is reviewed. Additionally, a new type of quasi-random center is introduced which may be better choices than other quasi-random points that are commonly used with RBF methods. All the results within the manuscript are reproducible as they are included as examples in the freely available Python Radial Basis Function Toolbox.展开更多
基金Funded by the Zhejiang Provincial Educatrion Ministry (No.2004884), and the Scientific Research Start-up Foundation of Ningbo University (No.2004037).
文摘In this paper, an approach to predicting randomly-shaped particle volume based on its two- Dimensional (2-D) digital image is explored. Conversion of gray-scale image of the particles to its binary counterpart is first performed using backlighting technique. The silhouette of particle is thus obtained, and consequently, informative features such as particle area, centroid and shape-related descriptors are collected. Several dimensionless parameters are defined, and used as regressor variables in a multiple linear regression model to predict particle volume. Regressor coefficients are found by fitting to a randomly selected sample of 501 panicles ranging in size from 4.75mm to 25ram. The model testing experiment is conducted against a different aggregate sample of the similar statistical properties, the errors of the model-predicted volume of the batch is within ±2%.
文摘In this study, we investigated the natural growth of Haloxylon ammodendron forest in Moso Bay, southwest of Gurbantunggut Desert. Random sample analysis was used to analyze the spatial point pattern performance of Haloxylon ammodendron population. ArcGIS software was used to summarize and analyze the spatial point pattern response of Haloxylon ammodendron population. The results showed that: 1) There were significant differences in the performance of point pattern analysis among different random quadrants. The paired t-test for variance mean ratio showed that the P values were 0.048, 0.004 and 0.301 respectively, indicating that the influence of quadrat shape on the performance of point pattern analysis was significant under the condition of the same optimal quadrat area. 2) The comparative analysis of square shapes shows that circular square is the best, square and regular hexagonal square are the second, and there is no significant difference between square and regular hexagonal square. 3) The number of samples plays a decisive role in spatial point pattern analysis. Insufficient sample size will lead to unstable results. With the increase of the number of samples to more than 120, the V value and P value curves will eventually stabilize. That is, stable spatial point pattern analysis results are closely related to the increase of the number of samples in random sample square analysis.
基金supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant no.51021004)the Research Fund of State Key Laboratory in Ocean Engineering of Shanghai Jiaotong University(Grant no.1104)the Scientific Research Foundation of Civil Aviation University of China(Grant no.09QD08X)
文摘Wave pressure on the wet surface of a V-shaped floating breakwater in random seas is investigated. Considering the diffraction effect, the unit velocity potential caused by the single regular waves around the breakwater is solved using the finite-depth Green function and boundary element method, in which the Green function is solved by integral method. The Response-Amplitude Operator(RAO) of wave pressure is acquired according to the Longuet-Higgins' wave model and the linear Bernoulli equation. Furthermore, the wave pressure's response spectrum is calculated according to the wave spectrum by discretizing the frequency domain. The wave pressure's characteristic value corresponding to certain cumulative probability is determined according to the Rayleigh distribution of wave heights. The numerical results and field test results are compared, which indicates that the wave pressure calculated in random seas agrees with that of field measurements. It is found that the bigger angle between legs will cause the bigger pressure response, while the increase in leg length does not influence the pressure significantly. The pressure at the side of head sea is larger than that of back waves. When the incident wave angle changes from 0? to 90?, the pressure at the side of back waves decreases clearly, while at the side of head sea, the situation is more complicated and there seems no obvious tendency. The concentration of wave energy around low frequency(long wavelength) will induce bigger wave pressure, and more attention should be paid to this situation for the structure safety.
基金Supported by the Fundamental Research Funds for the Central Universities(No.201562030)
文摘The geographical variations in life history characteristics of small yellow croaker Larimichthys polyactis, caused by experienced different environmental conditions, have been observed in China seas. Previous studies based on spatial distribution, migration route, and body morphometrics suggested a complex stock structure. In this study, to clarify the source of a spawning stock, we investigated the reproduction strategy and inter-structure of the Haizhou Bay (HZB) spawning stock in the middle Yellow Sea from both egg survey and adult otolith increment analysis. Egg and adult samples were collected from three surveys during spawning season in 2013. Distinct spatial and temporal variations were detected in egg distribution and size, and otolith shape analysis of adult fishes revealed two morphotypes with different increment growth using random forest cluster. The results indicate the existence of two components within the same spawning stock in HZB from different wintering grounds, and accordingly special protection should be required for this stock given the significance to maintain connectivity between adjacent subpopulations.
文摘A cup shape is a dynamic morphology of cells and organelles. With the aim of elucidating the formation of the biotic cup-shaped morphology, this study investigated cup-shaped vesicles consisting of an amphiphilic diblock copolymer from the aspect of synthetic polymer chemistry. Cup-shaped vesicles were obtained by the polymerization-induced self-assembly of poly(methacrylic acid)-block-poly(n-butyl methacrylate-random-methacrylic acid), PMAA-b-P(BMA-r-MAA), in an aqueous methanol solution using the photo nitroxide-mediated controlled/living radical polymerization technique. Field emission scanning electron microscopic observations demonstrated that the cup-shaped vesicles were suddenly formed during the late stage of the polymerization due to the extension of the hydrophobic P(BMA-r-MAA) block chain. During the early stage, the polymerization produced spherical vesicles rather than a cup shape. As the hydrophobic block chain was extended by the polymerization progress, the spherical vesicles reduced the size and were accompanied by the generation of small particles that were attached to the vesicles. The vesicles continued to reduce the size due to further extension of the hydrophobic chain;however, they suddenly grew into cup-shaped vesicles. This growth was accounted for by a change in the critical packing shape of the copolymer due to the hydrophobic chain extension. These findings are helpful for a better understanding of the biotic cup-shaped vesicle formation.
文摘Radial Basis Function methods for scattered data interpolation and for the numerical solution of PDEs were originally implemented in a global manner. Subsequently, it was realized that the methods could be implemented more efficiently in a local manner and that the local approaches could match or even surpass the accuracy of the global implementations. In this work, three localization approaches are compared: a local RBF method, a partition of unity method, and a recently introduced modified partition of unity method. A simple shape parameter selection method is introduced and the application of artificial viscosity to stabilize each of the local methods when approximating time-dependent PDEs is reviewed. Additionally, a new type of quasi-random center is introduced which may be better choices than other quasi-random points that are commonly used with RBF methods. All the results within the manuscript are reproducible as they are included as examples in the freely available Python Radial Basis Function Toolbox.